China has adopted nuclear power generation as one of the strategic energy sources to resolve the dilemma between its ever-growing energy demand and the associated environmental issues. To achieve the latter, a systematic assessment of the state of the ecosystem near nuclear power plants and its restoration via ongoing recovery actions would be highly desirable and much needed. Current assessment methods are mostly based on the individual components of the ecosystem and the methods are therefore not integrated. In this paper, we report a set of system-based assessment indices to study the restoration of Daya Bay in Guangdong, China where a nuclear power plant has been in operation for 15 years. The results show that decades of intensive exploitation by the various coastal activities have pushed Daya Bay's ecosystem away from its baseline and its structure and functions are impaired; ecosystem restoration does not make up for the weakening of the ecological carrying capacity due to anthropogenic sea-use, nonetheless, the potential for recovery still exists. The case study suggests that the system-based indices can provide integrated information for ecosystem restoration assessment and management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es1008592DOI Listing

Publication Analysis

Top Keywords

nuclear power
16
assessment indices
8
restoration daya
8
daya bay
8
power plant
8
ecosystem restoration
8
restoration
5
ecosystem
5
ecosystem-based assessment
4
indices restoration
4

Similar Publications

A path to carbon neutrality requires the development of refrigeration units that use no refrigerant or emit less greenhouse gas (GHG), such as Thermoelectric coolers (TECs). Using the life cycle inventory assessment (LCIA), the environmental impacts of the manufacturing process of TECs were analyzed, including greenhouse gas emissions, human carcinogenic toxicity (HCT), terrestrial ecotoxicity (TE), freshwater ecotoxicity (FE), mineral resource scarcity (MRS), and fossil resource scarcity (FRS). The alumina plate manufacturing process produces the most GHG emissions because it uses a lot of electricity in the sintering process.

View Article and Find Full Text PDF

Multisite synergistic interaction induced selective adsorption of CB5-TiCT complex for strontium ion: A combined theoretical and experimental study.

J Hazard Mater

January 2025

Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power Systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

In this work, we use a well-defined water-soluble macrocyclic molecule cucurbit[5]uril (CB5) to modify 2D TiCT MXene and assemble a novel high-performance adsorbent CB5-TiCT for Sr ion by density functional theory and experimental methods. The structural stabilities of two distinct types of CB5-TiCT (T = F, O and OH) complexes, i.e.

View Article and Find Full Text PDF

Safe storage of fresh and irradiated fuel is ensured by solving the problem of photon emission protection. The neutron component is usually not taken into account due to its low intensity. However, for the new VVER-1200 fuel, the neutron component consideration is a mandatory procedure for radiation safety.

View Article and Find Full Text PDF

We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combine AHA with this ansatz for the electronic binding potential, E(d)=(Eu-Es)Ec-EsEu-Esd/d0+Es, where Eu, Ec, Es correspond to the energies of the united atom, calibration at d0, and the sum of infinitely separated atoms, respectively. Our model covers the two-dimensional electronic potential energy surface spanned by distances of 0.

View Article and Find Full Text PDF

Background: The modern approach to treating rectal cancer, which involves total mesorectal excision directed by imaging assessments, has significantly enhanced patient outcomes. However, locally recurrent rectal cancer (LRRC) continues to be a significant clinical issue. Identifying LRRC through imaging is complex, due to the mismatch between fibrosis and inflammatory pelvic tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!