The reliable identification of interacting structural elements without prior isolation of interacting proteins can be achieved by using the novel fluorescence resonance energy transfer-coupled IANUS (Induced orgANization of strUcture by matrix-assisted togethernesS) peptide array. Here we report that parvulin 10 (Par10), an abundant Escherichia coli peptidyl prolyl cis/trans isomerase (PPIase), physically interacts with the alkyl hydroperoxide reductase subunit C (AhpC) in bacterial cell extracts, as determined by affinity chromatography and chemical cross-linking experiments. A Par10-negative E. coli strain showed increased sensitivity toward hydrogen peroxide compared to the wild-type strain. The IANUS experiment revealed three segments of the peroxiredoxin AhpC chain as potential Par10 binding partners. Inhibition of the Par10 PPIase activity by the corresponding AhpC-derived peptides as well as NMR data of (15)N-labeled Par10 in the presence of the AhpC(115-132) peptide or full-length AhpC confirmed that the putative Par10 active site is involved in the Par10-AhpC interaction. Moreover, NMR-based docking calculations as well as NOESY exchange peaks between the proline cis and trans isomers revealed the Asp125-Pro126 moiety of the AhpC segment G115-A132 as a substrate for Par10 enzymatic action. On the basis of these data, we conclude that Par10 catalytic activity is involved in the cellular protection against oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi101015pDOI Listing

Publication Analysis

Top Keywords

peptide array
8
escherichia coli
8
alkyl hydroperoxide
8
hydroperoxide reductase
8
par10
7
protein-free ianus
4
ianus peptide
4
array uncovers
4
uncovers interaction
4
interaction sites
4

Similar Publications

King cobra () venom comprises a diverse array of proteins and peptides. However, the roles and properties of these individual components are still not fully understood. Among these, Cysteine-rich secretory proteins (CRiSPs) are recognized but not fully characterized.

View Article and Find Full Text PDF

Direct Nuclear Delivery of Proteins on Living Plant via Partial Enzymatic Cell Wall Digestion.

Curr Issues Mol Biol

December 2024

Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.

Nuclear protein delivery underlies an array of biotechnological and therapeutic applications. While many variations of protein delivery methods have been described, it can still be difficult or inefficient to introduce exogenous proteins into plants. A major barrier to progress is the cell wall which is primarily composed of polysaccharides and thus only permeable to small molecules.

View Article and Find Full Text PDF

Understanding communication among microorganisms through the array of signal molecules and establishing controlled signal transfer between different species is a major goal of the future of biotechnology, and controlled multispecies bioreactor cultivations will open a wide range of applications. In this study, we used two quorum-sensing peptides from - namely, the competence and sporulation factor (CSF) and (PhrF)-to establish a controlled interkingdom communication system between prokaryotes and eukaryotes. For this purpose, we engineered as a reporter capable of detecting the CSF and PhrF peptides heterologously produced by the yeast .

View Article and Find Full Text PDF

Introduction: Malaria remains a significant burden, and a fully protective vaccine against is critical for reducing morbidity and mortality. Antibody responses against the blood-stage antigen Merozoite Surface Protein 2 (MSP2) are associated with protection from malaria, but its extensive polymorphism is a barrier to its development as a vaccine candidate. New tools, such as long-read sequencing and accurate protein structure modelling allow us to study the genetic diversity and immune responses towards antigens from clinical isolates with unprecedented detail.

View Article and Find Full Text PDF

Bacterial Cytochrome P450 Catalyzed Macrocyclization of Ribosomal Peptides.

ACS Bio Med Chem Au

December 2024

Department of Chemistry, The University of Hong Kong, 999077 Hong Kong Special Administrative Region, Hong Kong, China.

Macrocyclization is a vital process in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), significantly enhancing their structural diversity and biological activity. Universally found in living organisms, cytochrome P450 enzymes (P450s) are versatile catalysts that facilitate a wide array of chemical transformations and have recently been discovered to contribute to the expansion and complexity of the chemical spectrum of RiPPs. Particularly, P450-catalyzed biaryl-bridged RiPPs, characterized by highly modified structures, represent an intriguing but underexplored class of natural products, as demonstrated by the recent discovery of tryptorubin A, biarylitide and cittilin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!