Iron deficiency is a common health problem. The most severe consequence of this disorder is iron deficiency anemia (IDA), which is considered the most common nutritional deficiency worldwide. Newborn piglets are an ideal model to explore the multifaceted etiology of IDA in mammals, as IDA is the most prevalent deficiency disorder throughout the early postnatal period in this species and frequently develops into a critical illness. Here, we report the very low expression of duodenal iron transporters in pigs during the first days of life. We postulate that this low expression level is why the iron demands of the piglet body are not met by iron absorption during this period. Interestingly, we found that a low level of duodenal divalent metal transporter 1 and ferroportin, two iron transporters located on the apical and basolateral membrane of duodenal absorptive enterocytes, respectively, correlates with abnormally high expression of hepcidin, despite the poor hepatic and overall iron status of these animals. Parenteral iron supplementation by a unique intramuscular administration of large amounts of iron dextran is current practice for the treatment of IDA in piglets. However, the potential toxicity of such supplemental iron implies the necessity for caution when applying this treatment. Here we demonstrate that a modified strategy for iron supplementation of newborn piglets with iron dextran improves the piglets' hematological status, attenuates the induction of hepcidin expression, and minimizes the toxicity of the administered iron.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928957PMC
http://dx.doi.org/10.2353/ajpath.2010.091020DOI Listing

Publication Analysis

Top Keywords

iron
14
iron supplementation
12
iron deficiency
8
newborn piglets
8
low expression
8
iron transporters
8
iron dextran
8
benefits risks
4
risks iron
4
supplementation anemic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!