Transcription termination of non-polyadenylated RNAs in Saccharomyces cerevisiae occurs through the action of the Nrd1-Nab3-Sen1 complex. Part of the decision to terminate via this pathway occurs via direct recognition of sequences within the nascent transcript by RNA recognition motifs (RRMs) within Nrd1 and Nab3. Here we present the 1.6 Å structure of Nab3-RRM bound to its UCUU recognition sequence. The crystal structure reveals clear density for a UCU trinucleotide and a fourth putative U binding site. Nab3-RRM establishes a clear preference for the central cytidine of the UCUU motif, which forms pseudo-base pairing interactions primarily through hydrogen bonds to main chain atoms and one serine hydroxyl group. Specificity for the flanking uridines is less defined; however, binding experiments confirm that these residues are also important for high affinity binding. Comparison of the Nab3-RRM to other structures of RRMs bound to polypyrimidine RNAs showed that this mode of recognition is similar to what is observed for the polypyrimidine-tract binding RRMs, and that the serine residue involved in pseudo-base pairing is only found in RRMs that bind to polypyrimidine RNAs that contain a cytosine base, suggesting a possible mechanism for discriminating between cytosine and uracil bases in RRMs that bind to polypyrimidine-containing RNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017603 | PMC |
http://dx.doi.org/10.1093/nar/gkq751 | DOI Listing |
"Active" reservoir cells transcribing HIV can perpetuate chronic inflammation in virally suppressed people with HIV (PWH) and likely contribute to viral rebound after antiretroviral therapy (ART) interruption, so they represent an important target for new therapies. These cells, however, are difficult to study using single-cell RNA-seq (scRNA-seq) due to their low frequency and low levels of HIV transcripts, which are usually not polyadenylated. Here, we developed "HIV-seq" to enable more efficient capture of HIV transcripts - including non-polyadenylated ones - for scRNA-seq analysis of cells from PWH.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Strand-optimized Smart-seq (So-Smart-seq) can capture a comprehensive transcriptome from low-input samples. This technique detects both polyadenylated and non-polyadenylated RNAs, inclusive of repetitive RNAs, while excluding highly abundant ribosomal RNAs. So-Smart-seq preserves strand information and minimizes 5' to 3' coverage bias.
View Article and Find Full Text PDFFront Genet
December 2024
Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
The advent of long-read (LR) sequencing technologies has provided a direct opportunity to determine the structure of transcripts with potential for end-to-end sequencing of full-length RNAs. LR methods that have been described to date include commercial offerings from Oxford Nanopore Technologies (ONT) and Pacific Biosciences. These kits are based on selection of polyadenylated (polyA+) RNAs and/or oligo-dT priming of reverse transcription.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Turnover of messenger RNAs (mRNAs) is a highly regulated process and serves to control expression of RNA molecules and to eliminate aberrant transcripts. Profiling mRNA decay using short-read sequencing methods that target either the 5' or 3' ends of RNAs, overlooks valuable information about the other end, which could provide significant insights into biological aspects and mechanisms of RNA decay. Oxford Nanopore Technology (ONT) is rapidly emerging as a powerful platform for direct sequencing of native, single-RNA molecules.
View Article and Find Full Text PDFNat Cell Biol
December 2024
Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the entire transcriptome. Here we describe programmable full-length isoform transcriptome sequencing (PROFIT-seq), a method that enriches target transcripts while maintaining unbiased quantification of the whole transcriptome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!