On the basis of the complete genome sequence of the root-knot nematode Melodogyne hapla, we have deduced and annotated the entire proteome of this plant-parasite to create a database of 14,420 proteins. We have made this database, termed HapPep3, available from the Superfamily repository of model organism proteomes (http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY). To experimentally confirm the HapPep3 assignments using proteomics, we applied a data-independent LC/MS(E) analysis to M. hapla protein extracts fractionated by SDS-PAGE. A total of 516 nonredundant proteins were identified with an average of 9 unique peptides detected per protein. Some proteins, including examples with complex gene organization, were defined by more than 20 unique peptide matches, thus, providing experimental confirmation of computational predictions of intron/exon structures. On the basis of comparisons of the broad physicochemical properties of the experimental and computational proteomes, we conclude that the identified proteins reflect a true and unbiased sampling of HapPep3. Conversely, HapPep3 appears to broadly cover the protein space able to be experimentally sampled. To estimate the false discovery rate, we queried human, plant, and bacterial databases for matches to the LC/MS(E)-derived peptides, revealing fewer than 1% of matches, most of which were to highly conserved proteins. To provide a functional comparison of the acquired and deduced proteomes, each was subjected to higher order annotation, including comparisons of Gene Ontology, protein domains, signaling, and localization predictions, further indicating concordance, although those proteins that did deviate seem to be highly significant. Approximately 20% of the experimentally sampled proteome was predicted to be secreted, and thus potentially play a role at the host-parasite interface. We examined reference pathways to determine the extent of proteome similarity of M. hapla to that of the free-living nematode, Caenorhabditis elegans, revealing significant similarities and differences. Collectively, the analyzed protein set provides an initial foundation to experimentally dissect the basis of plant parasitism by M. hapla.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr1006069 | DOI Listing |
J Nematol
March 2024
Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.
Many root-knot nematode (RKN) species in the genus occur in Florida, including , a species able to overcome RKN resistance genes in many crops. The distribution of these nematodes in horticultural crops is not well known. A RKN survey was conducted in South and Central Florida aiming to: (i) identify RKN infecting vegetables, fruit, and other crops; (ii) document host plants; (iii) determine RKN distribution; and (iv) gain insight on the relatedness of obtained in this study with other populations from the USA and other countries.
View Article and Find Full Text PDFChem Biodivers
January 2025
INRGREF: Institut National de Recherche en Genie Rural Eaux et Forets, Forestry, Tunis, Tunis, TUNISIA.
Leaf essential oils (EOs) of seven Eucalyptus species from southern Tunisia (E. gracilis, E. lesouefii, E.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Agricultural Zoology and Entomology, Department of Science of Crop Production, Agricultural University of Athens, 11855 Athens, Greece.
The most common and damaging plant parasitic nematodes are root-knot nematodes (RNK). Although hemp has been clearly infected by RNK, little information is available regarding the extent of the damage and losses caused. In addition, no information is available concerning hemp seed extracts' activity against RNK.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China. Electronic address:
Infections caused by root-knot nematodes (RKNs) significantly impair vegetable growth and crop yield, posing a severe threat to global food security. Our previous study indicated that fungal-derived 2-furoic acid was a promising lead compound for the exploitation of eco-friendly nematicides. However, the exact molecular mechanism remains poorly understood.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Horticulture, Agriculture Faculty of Aburaihan, University of Tehran, P.O. Box 11365/4117, Tehran, Iran.
This research was conducted to determine the relationship between plant defense responses and the extent of treatment applied to either the aerial parts or roots of the plant. The experimental treatments included different methods of application (spraying versus soil drenching), varying treatment areas (one-sixth, one-third, half, or all of the plant's aerial parts and roots) with SA, and infecting the plants with root-knot nematodes. Evaluation of plant growth and nematode pathogenicity indices in the greenhouse section, HO accumulation rate, and phenylalanine ammonia lyase enzyme activity (in aerial parts and roots) were carried out in biochemical experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!