Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxytetracycline (2-(amino-hydroxy-methylidene)-4-dimethylamino-5,6,10,11,12a-pentahydroxy-6-methyl-4,4a,5,5a-tetrahydrotetracene-1,3,12-trione) is a major member of the tetracycline antibiotics family of which are widely administered to animals in concentrated animal feeding operations for purposes of therapeutical treatment and health protection. With the disposal of animal manure as fertilizer into agricultural land, tetracyclines enter the environment. However, tetracyclines chelate with multivalent cations and proteins, resulting in low extraction efficiencies from animal manure for tetracycline residue analysis. In this study an efficient extraction method for oxytetracycline from steer manure using methanol/water solution amended with chelating organic acid was developed for the analysis of high performance liquid chromatography. The effect of species and amount of amendment acids, shaking time, methanol/water ratio, manure weight, and repeated times of extraction was investigated. It was optimized to amend 2.5 g citric acid and 1.1 g oxalic acid with 10.0 g manure sample in a 50-ml centrifuge tube and extract with 15 ml methanol/water (9:1 in volume) by vigorously shaking for 30 min in a reciprocating shaker. After centrifugation at 11,000 rpm, supernatant is collected. Sample was extracted for a total of 3 times. The developed extraction method was further applied to extract oxytetracycline from fresh and aged cow manure, swine and poultry manure, and soil. Satisfactory recoveries ranging from (84.1 +/- 2.4) % to (102.0 +/- 3.1) % were obtained, demonstrating that the optimized extraction method is robust for oxytetracycline from different manure sample matrixes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03601234.2010.502404 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!