Although constant airflow through the upper airway has been shown to induce ventilatory depression in anesthetized newborn animals, the role of laryngeal temperature in this response has not been studied. Experiments were performed in fourteen 1-5 day-old anesthetized puppies breathing through a tracheostomy. Tidal volume and laryngeal temperature were recorded while a constant stream of air (15-25 ml/sec) at room temperature was passed in the expiratory direction for 20 sec through the isolated upper airway. Warm (35-37 degrees C), humidified air at the same flow served as control. When laryngeal temperature was decreased by 7.5 +/- 0.9 degrees C, a marked change in breathing pattern was observed (VT = 54 +/- 5, TI = 187 +/- 33, TE = 636 +/- 179, VT/TI = 45 +/- 10% of control; n = 9). Warm air at the same flow induced no significant changes. Superior laryngeal nerve section abolished the effects of cooling on breathing pattern. In 5 puppies we compared the effect of 'fast' and 'slow' laryngeal cooling. Fast trials altered breathing pattern earlier than slow trials. We conclude that the depressant effect of airflow through the upper airway is entirely due to a decrease in laryngeal temperature and is mediated by superior laryngeal nerve afferents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0034-5687(90)90105-8DOI Listing

Publication Analysis

Top Keywords

laryngeal temperature
16
upper airway
12
breathing pattern
12
ventilatory depression
8
airflow upper
8
air flow
8
superior laryngeal
8
laryngeal nerve
8
laryngeal
7
temperature
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!