Purpose: This study seeks to assess the use of labeling with micron-sized iron oxide (MPIO) particles for the detection and quantification of the migration of dendritic cells (DCs) using cellular magnetic resonance imaging (MRI).
Procedures: DCs were labeled with red fluorescent MPIO particles for detection by cellular MRI and a green fluorescent membrane dye (PKH67) for histological detection. MPIO-labeled DCs or unlabeled control DCs were injected into mice footpads at two doses (0.1 × 10(6) and 1 × 10(6)). Images were acquired at 3 Tesla before DC injection and 2, 3, and 7 days post-DC injection.
Results: Labeling DCs with MPIO particles did not affect viability, but it did alter markers of DC activation and maturation. MRI and fluorescence microscopy allowed for the detection of MPIO-labeled DCs within the draining popliteal nodes after their injection into the footpad.
Conclusions: This paper presents the first report of the successful use of fluorescent MPIO particles to label and track DC migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11307-010-0403-0 | DOI Listing |
Neuroscience
July 2024
Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France; CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, Caen, France.
Following a stroke, an inflammatory response occurs, characterized by an increased blood-brain barrier permeability, expression of endothelial trafficking molecules, and infiltration of immune cells. Adhesion molecules expressed on activated brain endothelial cells are potential biomarkers of intraparenchymal inflammation. However, in current clinical practice, it is not possible to measure endothelial activation using clinically available imaging.
View Article and Find Full Text PDFJ Biol Methods
September 2021
Department of Medical Biophysics, Western University, London, Ontario, Canada.
There is momentum towards implementing patient-derived xenograft models (PDX) in cancer research to reflect the histopathology, tumor behavior, and metastatic properties observed in the original tumor. To study PDX cells preclinically, we used both bioluminescence imaging (BLI) to evaluate cell viability and magnetic particle imaging (MPI), an emerging imaging technology to allow for detection and quantification of iron nanoparticles. The goal of this study was to develop the first successful iron labeling method of breast cancer cells derived from patient brain metsastases and validate this method with imaging during tumor development.
View Article and Find Full Text PDFMagn Reson Med
January 2022
Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada.
Purpose: Magnetic particle imaging (MPI) is a new imaging modality that sensitively and specifically detects superparamagnetic iron oxide nanoparticles (SPIOs). MRI cell tracking with SPIOs has very high sensitivity, but low specificity and quantification is difficult. MPI could overcome these limitations.
View Article and Find Full Text PDFNeuroscience
October 2021
Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France. Electronic address:
The ability to detect a molecular target in the central nervous system non-invasively and at high spatial resolution using magnetic resonance imaging (MRI) has attracted the interest of researchers for several decades. Yet, molecular MRI studies remain restricted to the preclinical stage and the path to clinical translation remains unclear. The focus of molecular MRI of neuroinflammation has moved from parenchymal to vascular targets, that are more easily reachable by intravenously injected probes.
View Article and Find Full Text PDFTransl Stroke Res
April 2022
Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Identification of patients with high-risk asymptomatic carotid plaques remains a challenging but crucial step in stroke prevention. Inflammation is the key factor that drives plaque instability. Currently, there is no imaging tool in routine clinical practice to assess the inflammatory status within atherosclerotic plaques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!