A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. | LitMetric

The present study was performed to investigate the effects of long-term heat stress on mass, strength and gene expression profile of human skeletal muscles without exercise training. Eight healthy men were subjected to 10-week application of heat stress, which was performed for the quadriceps muscles for 8 h/day and 4 days/week by using a heat- and steam-generating sheet. Maximum isometric force during knee extension of the heated leg significantly increased after heat stress (~5.8%, P < 0.05). Mean cross-sectional areas (CSAs) of vastus lateralis (VL, ~2.7%) and rectus femoris (~6.1%) muscles, as well as fiber CSA (8.3%) in VL, in the heated leg were also significantly increased (P < 0.05). Statistical analysis of microarrays (SAM) revealed that 10 weeks of heat stress increased the transcript level of 925 genes and decreased that of 1,300 genes, and gene function clustering analysis (Database for Annotation, Visualization and Integrated Discovery: DAVID) showed that these regulated transcripts stemmed from diverse functional categories. Transcript level of ubiquinol-cytochrome c reductase binding protein (UQCRB) was significantly increased by 10 weeks of heat stress (~3.0 folds). UQCRB is classified as one of the oxidative phosphorylation-associated genes, suggesting that heat stress can stimulate ATP synthesis. These results suggested that long-term application of heat stress could be effective in increasing the muscle strength associated with hypertrophy without exercise training.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-010-1617-1DOI Listing

Publication Analysis

Top Keywords

heat stress
16
mass strength
8
strength gene
8
long-term heat
8
responses muscle
4
muscle mass
4
gene transcripts
4
transcripts long-term
4
heat
4
stress
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!