Ethylene-responsive factors (ERFs), within a subgroup of the AP2/ERF transcription factor family, are involved in diverse plant reactions to biotic or abiotic stresses. Here, we report that overexpression of an ERF gene from Brassica rapa ssp. pekinensis (BrERF4) led to improved tolerance to salt and drought stresses in Arabidopsis. It also significantly affected the growth and development of transgenic plants. We detected that salt-induced expressions of a transcriptional repressor gene, AtERF4, and some Ser/Thr protein phosphatase2C genes, ABI1, ABI2 and AtPP2CA, were suppressed in BrERF4-overexpressing Arabidopsis plants. Furthermore, BrERF4 was induced by treatment with ethylene or methyljasmonate, but not by abscisic acid or NaCl in B. rapa. These results suggest that BrERF4 is activated through a network of different signaling pathways in response to salinity and drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10059-010-0114-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!