By use of a taxol-containing assembly medium, it has been demonstrated that the mean protofilament number of microtubule populations is significantly lower at elevated NaCl concentrations. Assembly of microtubule protein, i.e. tubulin plus microtubule-associated proteins (MAPs), at 80 and 580 mM NaCl results in microtubule populations with mainly 13 and 10 protofilaments whereas microtubules formed from tubulin alone have 12 and 10 protofilaments, respectively. Moreover, when MAPs are prevented from assembly, the formation of taxol-induced aberrant assemblies (C- and S-shaped protofilament ribbons) is suppressed at high NaCl concentrations in favour of microtubules. The described effects are obviously caused by both weakening of MAP binding to tubulin and alterations in tubulin-tubulin association.

Download full-text PDF

Source

Publication Analysis

Top Keywords

microtubule populations
8
nacl concentrations
8
sodium chloride
4
chloride structure
4
tubulin
4
structure tubulin
4
tubulin assemblies
4
assemblies taxol-containing
4
taxol-containing assembly
4
assembly medium
4

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Unlabelled: Asymmetric cell division is used by stem cells to create diverse cell types while self-renewing the stem cell population. Biased segregation of molecularly distinct centrosomes could provide a mechanism to maintain stem cell fate, induce cell differentiation or both. However, the molecular mechanisms generating molecular and functional asymmetric centrosomes remain incompletely understood.

View Article and Find Full Text PDF

Insights from the single-cell level: lineage trajectory and somatic-germline interactions during spermatogenesis in dwarf surfclam Mulinia lateralis.

BMC Genomics

January 2025

MOE Key Laboratory of Marine Genetics and Breeding, Laboratory for Marine Biology and Biotechnology (Qingdao Marine Science and Technology Center), Ocean University of China, Qingdao, China.

Background: Spermatogenesis is a complex process of cellular differentiation that commences with the division of spermatogonia stem cells, ultimately resulting in the production of functional spermatozoa. However, a substantial gap remains in our understanding of the molecular mechanisms and key driver genes that underpin this process, particularly in invertebrates. The dwarf surfclam (Mulinia lateralis) is considered an optimal bivalve model due to its relatively short generation time and ease of breeding in laboratory settings.

View Article and Find Full Text PDF

CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility.

Cell Mol Life Sci

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.

View Article and Find Full Text PDF

Background: The inability of damaged neurons to regenerate and of axons to establish new functional connections leads to permanent functional deficits after spinal cord injury (SCI). Although astrocyte reprogramming holds promise for neurorepair in various disease models, it is not sufficient on its own to achieve significant functional recovery.

Methods: A rat SCI model was established using a spinal cord impactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!