We evaluated the DTI changes in the deep gray nuclei and dorsal brain stem, which demonstrated abnormal T2 and/or diffusion signal intensity, in 6 patients with infantile spasm treated with vigabatrin compared with 6 age-matched controls. Regions of interest were placed in the globi pallidi, thalami, and dorsal brain stem; FA, trace, D(‖), and D(⊥) were measured. Patients on vigabatrin had significantly lower FA in both globi pallidi (P = .01) and the dorsal brain stem (P < .01), significantly lower trace in both globi pallidi (P = .01) and the thalami (P = .02 and .01 for right and left, respectively), and significantly lower D(‖) in both globi pallidi (P ≤ .01), the thalami (P < .01), and the dorsal brain stem (P = .03). There were no significant differences in D(⊥) of the globi pallidi, thalami, or dorsal brain stem in patients compared with controls. The findings suggest that axonal changes play a greater role in the observed abnormal signal intensity, with lesser contribution from myelin changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964948PMC
http://dx.doi.org/10.3174/ajnr.A2224DOI Listing

Publication Analysis

Top Keywords

dorsal brain
24
brain stem
24
globi pallidi
20
pallidi thalami
12
thalami dorsal
12
deep gray
8
gray nuclei
8
nuclei dorsal
8
infantile spasm
8
spasm treated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!