A sensitive, accurate, and precise enzyme immunoassay (EIA) for the quantification of intact human B7.1-Fc in rhesus monkey serum was validated, and the characteristics of B7.1 and Fc moiety of fusion protein were identified by surface plasmon resonance (SPR) and flow-cytometric method, respectively. B7.1-Fc bound to CD28 and CTLA-4 with K(d) values of 45.1 and 9.58 nM, respectively, which were very closed to the previous reports and the function of Fc moiety of fusion protein was also confirmed by Fc receptor binding assay and IL-8 releasing assay. To monitor the intact protein, the EIA method employed a sandwich scheme in which a multiclonal anti-human IgG (Fc specific) antibody and a monoclonal anti-human B7.1 antibody were served as capture and detection antibody, respectively. This EIA has a range of reliable response of 0.5-32 ng/ml. The LLOQ was established at 0.5 ng/ml. The intra-assay precision and accuracy were 6.1-8.8% and (3.0-9.0)%, respectively with the inter-assay precision and accuracy were 5.7-11.5% and (10.7-9.1)%, respectively. Stability was established under certain conditions and no significant differences were found. This validated EIA assay was then successfully employed in the assessment of pharmacokinetic behavior of B7.1-Fc in rhesus monkeys after intravenous infusion, and a non-linear characteristics was established across the investigated dosage range (32-320 μg/kg).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2010.07.040DOI Listing

Publication Analysis

Top Keywords

fusion protein
12
human b71-fc
8
rhesus monkeys
8
b71-fc rhesus
8
moiety fusion
8
precision accuracy
8
qualitative quantitative
4
quantitative studies
4
studies human
4
b71-fc
4

Similar Publications

Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.

View Article and Find Full Text PDF

Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours.

View Article and Find Full Text PDF

Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.

Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.

View Article and Find Full Text PDF

Molecular architecture of human LYCHOS involved in lysosomal cholesterol signaling.

Nat Struct Mol Biol

January 2025

Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.

Lysosomal membrane protein LYCHOS (lysosomal cholesterol signaling) translates cholesterol abundance to mammalian target of rapamycin activation. Here we report the 2.11-Å structure of human LYCHOS, revealing a unique fusion architecture comprising a G-protein-coupled receptor (GPCR)-like domain and a transporter domain that mediates homodimer assembly.

View Article and Find Full Text PDF

Efficient production of recombinant hybrid mussel proteins with improved adhesion.

Int J Biol Macromol

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:

Mussel foot proteins (mfps) play important roles in surface interaction and underwater adhesion. However, limited production and the lack of adhesion of recombinant mfps have restricted their widespread use. Here, we present a general strategy for enhancing both the expression and function of mfps by connecting multiple protein fragments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!