The multi-residue trace-level determination of six pesticides (diazinon, dimethoate, chlorpyrifos, vinclozolin, fenthion and quinalphos) in wine samples, after their single-drop microextraction (SDME) is presented herein. The extraction procedure was optimized using the multivariate optimization approach following a two-stage process. The first screening experimental design brought out the significant parameters and was followed by a central composite design (CCD) experiment, which revealed the simultaneous effect of the significant factors affecting the SDME process. High level of linearity for all target analytes was recorded with r(2) ranging between 0.9978 and 0.9999 while repeatability (intra-day) and reproducibility (inter-day) varied from 5.6% to 7.4% and 4.9% to 12.5%, respectively. Limits of detection (LODs) and limits of quantification (LOQs) were found to range in the low microg L(-1) level. In general, the developed methodology presented simplicity and enhanced sensitivity, rendering it appropriate for routine wine screening purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2010.06.046 | DOI Listing |
Foods
December 2024
Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan Academy of Inspection and Testing, Haikou 571199, China.
In this study, residues of 10 neonicotinoid insecticides were tested with 143 fresh samples of using the QuEChERS method combined with UPLC-MS/MS. Based on the residue results, the point estimation method was used to assess dietary risks for adults and children, and the cumulative risk was assessed according to the hazard index () and relative potency factor () methods. The results showed that 71 out of 143 samples of fresh sold in Hainan tested positive for neonicotinoid insecticides, with a detection rate of 49.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).
View Article and Find Full Text PDFMolecules
January 2025
School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China.
This study systematically investigated the effect of organic solvent addition on the detection signal intensity of 15 organic pesticides in water using ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). The analysis of chromatographic peak area ratios in ultrapure water (UPW) versus 30% methanol (MeOH)-UPW showed that the adsorption effects (AEs, mainly from injection vials with weaker polarity) were the main factor influencing the detection intensity of the organic pesticides. The AEs varied with pesticide type and concentration, especially for those with high logK values and longer retention times, such as malathion, triadimefon, prometryn, S-metolachlor, diazinon, and profenofos.
View Article and Find Full Text PDFMolecules
December 2024
Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland.
This work aimed to investigate the adsorption of organic compounds (4-nitroaniline and 4-chlorophenoxyacetic acid) on activated carbon in the presence of selected dyes (uranine and Acid Red 88) and surfactants (sodium dodecyl sulfate and hexadecyltrimethylammonium bromide). The adsorbent, i.e.
View Article and Find Full Text PDFMalar J
January 2025
PMI Defeat Malaria Activity, University Research Co., LLC, Yangon, Burma.
Background: In Myanmar, progress towards malaria elimination has stagnated in some areas requiring deployment of new tools and approaches to accelerate malaria elimination. While there is evidence that networks of community-based malaria workers and insecticide-treated nets (ITNs) can reduce malaria transmission in a variety of settings, evidence for the effectiveness of other interventions, such as topical repellents, is limited. Since malaria transmission in Myanmar occurs outdoors, mainly among forest-goers, this study tested the effectiveness of topical repellents in combination with supplemental ITN distribution and strengthened networks of malaria workers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!