A new terbium selective sensor based on N-(2-hydroxyphenyl)-3-(2-hydroxyphenylhydroxyphenylimino)-N-phenylbutanamidine (L(1)) and N,N'-bis((1H-indole-3-yl)methylene)butane-1,4 diamine (L(2)) as a ionophore is reported. Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), dibutyl butylphosphonate (DBBP), chloronaphthelene (CN), dioctylphthalate (DOP) and tri-(2-ethylhexyl)phosphate (TEHP) with anion excluder, potassium tetrakis (p-chloropheny1)borate (KTpClPB) have been studied. The membrane with a composition of ionophore (L(1)):KTpClPB:PVC:o-NPOE (w/w, %) in ratio of 3.0:5.0:30.0:62.0 exhibited enhanced selectivity towards terbium ions (III) in the concentration range of 3.5 x 10(-7) to 1.0x10(-2)M with a detection limit of 1.2 x 10(-7)M and a Nernstian slope (20.0+/-0.5mVdec(-1) activity). The sensors showed the working pH range to be 3.5-7.5 with response time of 11s. The sensor has been found to work satisfactorily in partially non-aqueous media up to 15% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients indicated high selectivity for terbium (III). The fast and stable response, good reproducibility and long-term stability of the sensors were observed. The application of the sensor has been demonstrated in determination of terbium (III) ions in spiked water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2010.06.021 | DOI Listing |
Talanta
January 2025
School of Pharmacy, Binzhou Medical University, Yantai, 264003, China. Electronic address:
Ciprofloxacin (CIP) is a commonly used antibiotic, but its abuse may cause bacterial resistance, posing a high risk to the environment and human health. Herein, based on the molecular imprinting technology, this study proposed a ratiometric fluorescence sensor employing the "post-doping" strategy, which aims to be rapid, selective, and visually easy-to-use for CIP detection to address antibiotic residues and environmental risks. Specifically, by exploiting the "antenna effect" of lanthanide metal ions (Ln), terbium (III) (Tb) chosen as a fluorescence-assisted functional monomer as well as the red emitting CdTe quantum dots (QDs) as the internal reference signal were introduced into multi-emission Tb-CdTe@SiO@MIPs (TbMIPs).
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China. Electronic address:
The excessive presence of the metal ions Cu and Fe in the environment poses a serious threat to ecosystems and human health, so timely and accurate detection of them has become essential and urgent. In this paper, a novel hydrogel-based fluorescent sensor, named ME-IPA@SA-TbZn, was fabricated facilely through an in-situ cross-linking modification method and was used for the detection of Cu and Fe in water bodies. The ME-IPA@SA-TbZn is essentially a hybrid hydrogel bead that exhibits vibrant fluorescence, employing Tb and Zn functionalized hydrogen-bonded organic frameworks (HOFs) as the fluorescence functional core and sodium alginate (SA) as the hydrogel matrix.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemical Engineering, The City College of New York, New York, NY 10031.
Rare earth elements (REEs) are critical materials to modern technologies. They are obtained by selective separation from mining feedstocks consisting of mixtures of their trivalent cation. We are developing an all-aqueous, bioinspired, interfacial separation using peptides as amphiphilic molecular extractants.
View Article and Find Full Text PDFACS Omega
December 2024
The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
Lanthanide nitride (N) materials have garnered significant interest in recent years due to their promising potential as heterogeneous catalysts for green ammonia synthesis under low temperature and pressure reaction conditions. Here, we report on the synthesis of an extended series of lanthanide () nitride powders ( = lanthanum, cerium, neodymium, samarium, gadolinium, terbium, dysprosium, erbium, lutetium) and their structural and vibrational properties. Polycrystalline powders were fabricated using a ball milling mechanochemical process, and their structural properties were assessed by X-ray diffraction (XRD) and transmission electron microscopy (TEM).
View Article and Find Full Text PDFInorg Chem
December 2024
Lomonosov Moscow State University, Leninskie Gory, 1, Build. 3, Moscow 119991, Russian Federation.
In this study, we successfully obtained for the first time a luminescent organic-based thermometer that exhibits high reproducibility, stability, and functionality up to 400 °C. Our approach involved the selection of novel highly emissive and thermally stable MOFs KEu(btec)(HO) and dehydrated KTb(btec), btec = benzene-1,2,4,5-tetracarboxylate, along with the highly thermally stable copolyimide P84 = 80% methylphenylene-diamine + 20% methylene as the matrix; luminescence lifetime was selected as a temperature-dependent parameter due to its versatility in diverse environmental conditions. Synthesis peculiarities were studied for various lanthanide benzene-1,2,4,5-tetracarboxylates, and the crystal structures of KEu(btec)(HO) and KTb(btec) were determined by Rietveld refinement from powder X-ray diffraction data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!