Zinc and cytosolic phospholipase A(2) (cPLA(2)) have been implicated in the death of neural cells and the pathogenesis of ischemia, and hyperglycemia is a potential augmenting factor. However, their potential crosstalk and/or interaction in mediating cell damage have not yet been fully elucidated. Here, we report that a potential link between cPLA(2) activation and zinc-induced astrocyte damage involving reactive oxygen species (ROS)/protein kinase C-α (PKC-α)/extracellular signal-regulated kinase (ERK) signaling and glucose is able to increase zinc uptake and potentiate zinc-induced alterations and astrocyte damage. The cell death caused by ZnCl(2) was accompanied by increased ROS generation, PKC-α membrane translocation, ERK phosphorylation, and cPLA(2) phosphorylation and activity. Pharmacological studies revealed that these activations contributed to ZnCl(2)-induced astrocyte death. Mechanistic studies had suggested that ROS/PKC-α/ERK was a potential signal linking zinc and cPLA(2). Glucose increased zinc uptake and potentiated ZnCl(2)-induced alterations and astrocyte death. These observations indicated that ROS/PKC-α/ERK signaling and cPLA(2) were actively involved in zinc-induced astrocyte damage, and suggested zinc was a potential downstream effector in hyperglycemia-aggravated astrocyte injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2010.08.012DOI Listing

Publication Analysis

Top Keywords

zinc-induced astrocyte
12
astrocyte death
12
astrocyte damage
12
zinc uptake
8
alterations astrocyte
8
astrocyte
7
death
5
zinc
5
cpla2
5
potential
5

Similar Publications

Zinc induces reactive astrogliosis through ERK-dependent activation of Stat3 and promotes synaptic degeneration.

J Neurochem

December 2021

Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Reactive astrogliosis is an early event in Alzheimer's disease (AD) brain and plays a key role in synaptic degeneration in AD development. Zinc accumulates in extracellular fraction and synaptosomes in AD human brains with its effect on reactive astrocytes remaining unknown. Through Western blotting, Quantitative polymerase chain reaction (qPCR), and immunofluorescence detection on primary astrocytes treated by zinc and/or zinc chelator, we revealed that zinc induced harmful A1-type reactive astrogliosis in cultured primary astrocytes; the latter, promoted synaptic degeneration in primary neurons.

View Article and Find Full Text PDF

Pathological release of excess zinc ions and the resultant increase in intracellular zinc has been implicated in ischemic brain cell death, although the underlying mechanisms are not fully understood. Since zinc promotes the formation of the autophagic signal, reactive oxygen species (ROS), and increases autophagy, a known mechanism of cell death, we hypothesized that autophagy is involved in zinc-induced hypoxic cell death. To study this hypothesis, we determined the effect of zinc on autophagy and ROS generation in C8-D1A astrocytes subjected to hypoxia and rexoygenation (H/R), simulating ischemic stroke.

View Article and Find Full Text PDF

Angiopoietin-1 blocks neurotoxic zinc entry into cortical cells via PIP2 hydrolysis-mediated ion channel inhibition.

Neurobiol Dis

September 2015

Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea; Department of Neurology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea. Electronic address:

Excessive entry of zinc ions into the soma of neurons and glial cells results in extensive oxidative stress and necrosis of cortical cells, which underlies acute neuronal injury in cerebral ischemia and epileptic seizures. Here, we show that angiopoietin-1 (Ang1), a potent angiogenic ligand for the receptor tyrosine kinase Tie2 and integrins, inhibits the entry of zinc into primary mouse cortical cells and exerts a substantial protective effect against zinc-induced neurotoxicity. The neuroprotective effect of Ang1 was mediated by the integrin/focal adhesion kinase (FAK) signaling axis, as evidenced by the blocking effects of a pan-integrin inhibitory RGD peptide and PF-573228, a specific chemical inhibitor of FAK.

View Article and Find Full Text PDF

Background: The angiotensin system has several non-vascular functions in the central nervous system. For instance, inhibition of the brain angiotensin system results in a reduction in neuronal death following acute brain injury such as ischemia and intracerebral hemorrhage, even under conditions of constant blood pressure. Since endogenous zinc has been implicated as a key mediator of ischemic neuronal death, we investigated the possibility that the angiotensin system affects the outcome of zinc-triggered neuronal death in cortical cell cultures.

View Article and Find Full Text PDF

Aim: Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!