Alternative splicing (AS) of pre-mRNA is utilized by higher eukaryotes to achieve increased transcriptome and proteomic complexity. The serine/arginine (SR) splicing factors regulate tissue- or cell-type-specific AS in a concentration- and phosphorylation-dependent manner. However, the mechanisms that modulate the cellular levels of active SR proteins remain to be elucidated. In the present study, we provide evidence for a role for the long nuclear-retained regulatory RNA (nrRNA), MALAT1 in AS regulation. MALAT1 interacts with SR proteins and influences the distribution of these and other splicing factors in nuclear speckle domains. Depletion of MALAT1 or overexpression of an SR protein changes the AS of a similar set of endogenous pre-mRNAs. Furthermore, MALAT1 regulates cellular levels of phosphorylated forms of SR proteins. Taken together, our results suggest that MALAT1 regulates AS by modulating the levels of active SR proteins. Our results further highlight the role for an nrRNA in the regulation of gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158944PMC
http://dx.doi.org/10.1016/j.molcel.2010.08.011DOI Listing

Publication Analysis

Top Keywords

malat1 regulates
12
alternative splicing
8
splicing factors
8
cellular levels
8
levels active
8
active proteins
8
malat1
6
splicing
5
nuclear-retained noncoding
4
noncoding rna
4

Similar Publications

Background: Numerous studies have demonstrated the significance of long noncoding RNA (lncRNA) in the development of cancer metastasis. The expression levels of many lncRNAs are elevated in metastatic lung cancer patients compared to non-metastatic lung cancer patients.

Objectives: The primary objective of the study was to investigate the association between the expression levels of three lncRNAs (MALAT1, HOTAIR, and AFAP1-AS1) and lymph node metastasis (LNM) of lung cancer.

View Article and Find Full Text PDF

LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases.

Pathol Res Pract

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India. Electronic address:

Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases.

View Article and Find Full Text PDF

Long non-coding RNA fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and β-catenin-OPG/Jagged1 pathway.

Elife

December 2024

Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States.

The IncRNA was initially believed to be dispensable for physiology due to the lack of observable phenotypes in knockout (KO) mice. However, our study challenges this conclusion. We found that both KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is a common cardiac arrhythmia associated with significant morbidity and mortality. Rapid electrical stimulation (RES) of atrial fibroblasts plays a crucial role in AF pathogenesis, but the underlying molecular mechanisms remain unclear. This study investigates the regulatory axis involving MALAT1, miR-499a-5p, and SOX6 in human cardiac fibroblasts from adult atria (HCF-aa) under RES conditions.

View Article and Find Full Text PDF

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is a long non-coding RNA localized in the cell nucleus, known for its multifunctional roles, including potential involvement in spermatogenesis. This study investigates the mechanism by which MALAT1 dysregulation contributes to the pathogenesis of idiopathic non-obstructive azoospermia (iNOA). We analyzed MALAT1 levels in two gene expression profiling datasets comprising patients with obstructive azoospermia (OA) who have normal spermatogenesis and 13 patients with iNOA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!