In order to characterize A/H5N1 viral sequences, a bioinformatics approach accurately identified viral sequences from discovery of a sequence signature, which provided enough distinctive information for sequence identification. Eight highly pathogenic H5N1 viral isolations were collected from different areas of Thailand between 2003 and 2006, and were used for analysis of H5N1 genotypic testing with a semiconductor-based oligonucleotide microarray. All H5N1 samples and H1N1, H4N8 negative controls were correctly subtyped. Sensitivity of the eight oligonucleotide probes, with optimized cut-offs, ranged from 70% (95% CI 65-75) to 87% (95% CI 84-91), and the corresponding Kappa values ranged from 0.76 (95% CI 0.72-0.80) to 0.86 (95% CI 0.83-0.89). Semi-conductor-based oligonucleotide array and oligonucleotide probes corresponded well when detecting H5N1. After fully correcting the subtype from the result of microarray signal intensity, the microarray output method combined with bioinformatics tools, identified and monitored genetic variations of H5N1. Capability of distinguishing different strains of H5N1 from Thailand was the outstanding feature of this assay. Ninety percent of HA and NA (4/5) genes were sequenced correctly, in accordance with previous examinations performed by classical diagnostic methods. The low-medium-high bioinformatics resolutions were able to predict an epidemic strain of H5N1. This study also showed the advantage of using a large genotypic database to predict the epidemic strain of H5N1. However, the monitoring protocol of this new strain has been recommended for further study with a large-scale sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcp.2010.08.006DOI Listing

Publication Analysis

Top Keywords

viral sequences
12
h5n1
9
bioinformatics approach
8
a/h5n1 viral
8
oligonucleotide probes
8
predict epidemic
8
epidemic strain
8
strain h5n1
8
integrated bioinformatics
4
approach characterization
4

Similar Publications

The LIM-domain-only protein LMO2 and its binding partner LDB1 are differentially required for class switch recombination.

Proc Natl Acad Sci U S A

January 2025

Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.

The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.

View Article and Find Full Text PDF

Angiotensin receptor-neprilysin inhibitor (ARNI) and angiotensin II receptor blockers (ARB) are antihypertension medications that improve cardiac remodeling and protect the heart. However, at the early stage of hypertension, it is still unclear how these two drugs affect the transcriptomic profile of multiple organs in hypertensive rats and the transcriptomic differences between them. We performed RNA sequencing to define the RNA expressing profiles of the eight tissues (atrium, ventricle, aorta, kidney, brain, lung, white fat, and brown fat) in spontaneously hypertensive rats (SHRs) and SHRs treated with ARNI or ARB.

View Article and Find Full Text PDF

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

RNA modifications, such as N6-methylation of adenosine (m6A), serve as key regulators of cellular behaviors, and are highly dynamic; however, tools for dynamic monitoring of RNA modifications in live cells are lacking. Here, we develop a genetically encoded live-cell RNA methylation sensor that can dynamically monitor RNA m6A level at single-cell resolution. The sensor senses RNA m6A in cells via affinity-induced cytoplasmic retention using a nuclear location sequence-fused m6A reader.

View Article and Find Full Text PDF

Monitoring molecular markers associated with antimalarial drug resistance in south-east Senegal from 2021 to 2023.

J Antimicrob Chemother

January 2025

Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.

Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.

Objective: To assess the proportion of P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!