Flexibility and communication within the structure of the Mycobacterium smegmatis methionyl-tRNA synthetase.

FEBS J

Department of Cell and Molecular Biology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden.

Published: October 2010

Two structures of monomeric methionyl-tRNA synthetase, from Mycobacterium smegmatis, in complex with the ligands methionine/adenosine and methionine, were analyzed by X-ray crystallography at 2.3 Å and at 2.8 Å, respectively. The structures demonstrated the flexibility of the multidomain enzyme. A new conformation of the structure was identified in which the connective peptide domain bound more closely to the catalytic domain than described previously. The KMSKS(301-305) loop in our structures was in an open and inactive conformation that differed from previous structures by a rotation of the loop of about 90° around hinges located at Asn297 and Val310. The binding of adenosine to the methionyl-tRNA synthetase methionine complex caused a shift in the KMSKS domain that brought it closer to the catalytic domain. The potential use of the adenosine-binding site for inhibitor binding was evaluated and a potential binding site for a specific allosteric inhibitor was identified.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2010.07784.xDOI Listing

Publication Analysis

Top Keywords

methionyl-trna synthetase
12
mycobacterium smegmatis
8
catalytic domain
8
flexibility communication
4
communication structure
4
structure mycobacterium
4
smegmatis methionyl-trna
4
structures
4
synthetase structures
4
structures monomeric
4

Similar Publications

Generation of induced pluripotent stem cell line ISMMSi060-A from a patient with combined oxidative phosphorylation deficiency 25.

Stem Cell Res

January 2025

Division of Genetics and Metabolism - Department of Pediatrics, Center of Human Genomics and Precision Medicine, University of Wisconsin - School of Medicine and Public Health, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:

We have described a novel mitochondrial disorder caused by biallelic pathogenic variants in the methionyl-tRNA synthetase 2 gene (MARS2), now termed Combined oxidative phosphorylation deficiency 25 (COXPD25). This study focuses on the generation and characterization of induced pluripotent stem cells (iPSCs) from fibroblasts of a patient with COXPD25. The resulting iPSC line ISMMSi060-A, carries the compound heterozygous variants c.

View Article and Find Full Text PDF

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

A novel methionyl-tRNA synthetase inhibitor targeting gram-positive bacterial pathogens.

Antimicrob Agents Chemother

December 2024

Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA.

New antibiotics are needed to treat gram-positive bacterial pathogens. is a novel inhibitor of methionyl-tRNA synthetase with selective activity against gram-positive bacteria. The minimum inhibitory concentrations (MICs) against and species range from 0.

View Article and Find Full Text PDF
Article Synopsis
  • - Brucellosis, caused by the Brucella bacterium, leads to serious economic losses in livestock due to reproductive issues and reduced milk production, coupled with antibiotic resistance complicating treatment efforts.
  • - This study focuses on isolating a compound called piperolactam A from Piper betle leaves, aiming to evaluate its potential as an antibacterial agent against Brucella sp. and its mechanism of action against specific enzymes in bacteria.
  • - Through molecular docking methods, the research shows that piperolactam A exhibits strong binding affinity to leucyl-tRNA synthetase (LeuRS), suggesting it could effectively inhibit bacterial growth by disrupting protein synthesis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!