Signal resolution in (1)H NMR is limited primarily by multiplet structure. Recent advances in pure shift NMR, in which the effects of homonuclear couplings are suppressed, have allowed this limitation to be circumvented in 1D NMR, gaining almost an order of magnitude in spectral resolution. Here for the first time an experiment is demonstrated that suppresses multiplet structure in both domains of a homonuclear two-dimensional spectrum. The principle is demonstrated for the TOCSY experiment, generating a chemical shift correlation map in which a single peak is seen for each coupled relationship, but the principle is general and readily extensible to other homonuclear correlation experiments. Such spectra greatly simplify manual spectral analysis and should be well-suited to automated methods for structure elucidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja1039715DOI Listing

Publication Analysis

Top Keywords

chemical shift
8
shift correlation
8
tocsy experiment
8
multiplet structure
8
true chemical
4
correlation maps
4
maps tocsy
4
experiment pure
4
pure shifts
4
shifts dimensions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!