Escherichia coli mutants that synthesize dephosphorylated lipid A molecules.

Biochemistry

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.

Published: September 2010

The lipid A moiety of Escherichia coli lipopolysaccharide is a hexaacylated disaccharide of glucosamine that is phosphorylated at the 1 and 4' positions. Expression of the Francisella novicida lipid A 1-phosphatase FnLpxE in E. coli results in dephosphorylation of the lipid A proximal unit. Coexpression of FnLpxE and the Rhizobium leguminosarum lipid A oxidase RlLpxQ in E. coli converts much of the proximal glucosamine to 2-amino-2-deoxygluconate. Expression of the F. novicida lipid A 4'-phosphatase FnLpxF in wild-type E. coli has no effect because FnLpxF cannot dephosphorylate hexaacylated lipid A. However, expression of FnLpxF in E. coli lpxM mutants, which synthesize pentaacylated lipid A lacking the secondary 3'-myristate chain, causes extensive 4'-dephosphorylation. Coexpression of FnLpxE and FnLpxF in lpxM mutants results in massive accumulation of lipid A species lacking both phosphate groups, and introduction of RlLpxQ generates phosphate-free lipid A variants containing 2-amino-2-deoxygluconate. The proposed lipid A structures were confirmed by electrospray ionization mass spectrometry. Strains with 4'-dephosphorylated lipid A display increased polymyxin resistance. Heptose-deficient mutants of E. coli lacking both the 1- and 4'-phosphate moieties are viable on plates but sensitive to CaCl(2). Our methods for reengineering lipid A structure may be useful for generating novel vaccines and adjuvants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943570PMC
http://dx.doi.org/10.1021/bi101253sDOI Listing

Publication Analysis

Top Keywords

lipid
13
escherichia coli
8
mutants synthesize
8
novicida lipid
8
coexpression fnlpxe
8
lpxm mutants
8
coli
6
mutants
4
coli mutants
4
synthesize dephosphorylated
4

Similar Publications

Background: The potential therapeutic role of magnesium (Mg) in type 2 diabetes mellitus (T2DM) remains insufficiently studied despite its known involvement in critical processes like lipid metabolism and insulin sensitivity. This study examines the impact of Mg-focused nutritional education on lipid profile parameters, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in T2DM patients.

Methods: Thirty participants with T2DM were recruited for this within-subject experimental study.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Background: Interactions between RNA-binding proteins and RNA regulate RNA transcription during osteoporosis. Ferroptosis, a programmed cell death caused by iron metabolism, plays a vital role in osteoporosis. However, the mechanisms by which RNA-binding proteins are involved in ferroptosis during osteoporosis remain unclear.

View Article and Find Full Text PDF

Background: To identify the relationship between BMI or lipid metabolism and diabetic neuropathy using a Mendelian randomization (MR) study.

Methods: Body constitution-related phenotypes, namely BMI (kg/m), total cholesterol (TC), and triglyceride (TG), were investigated in this study. Despite the disparate origins of these data, all were accessible through the IEU OPEN GWAS database ( https://gwas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!