Therapeutic considerations in the elderly hypertensive. The role of calcium channel blockers.

Am J Hypertens

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510-2008.

Published: December 1990

Hypertension is an extremely common problem in the elderly. The optimum antihypertensive agent to use in this population is not certain. In this paper, the factors influencing the choice of antihypertensive therapy are reviewed. They include efficacy, safety, comorbidity, utility in special populations, drug interaction, dosage schedule, cost, the mechanisms of action of the drug, and the pathophysiology of the patient's hypertension. Calcium channel blockers are effective and safe in the elderly. They improve other conditions frequently seen in that population and, with the exception of cardiac conduction abnormalities associated with some calcium channel blockers, do not adversely affect other comorbid diseases. They work well together with other antihypertensives and as vasodilators, they may be specifically appropriate in elderly hypertensives, whose hypertension is associated with reduced cardiac output and increased peripheral vascular resistance. Once- and twice-a-day preparations are available to foster compliance, but calcium channel blockers are expensive.

Download full-text PDF

Source

Publication Analysis

Top Keywords

calcium channel
16
channel blockers
16
therapeutic considerations
4
elderly
4
considerations elderly
4
elderly hypertensive
4
hypertensive role
4
calcium
4
role calcium
4
channel
4

Similar Publications

Ectopic calcifications occur in tendons, ligaments, entheses, muscles, and fasciae, and are often associated with pain and inflammation. In clinical settings, these calcifications are commonly treated by physical therapy and/or surgical interventions. However, there is not enough understanding of pharmacological treatments as primary cures, supportive therapy to physical or surgical treatment, or even preventive measures to avoid or diminish the development of ectopic calcifications.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

Calcium Phosphate Nanoparticles Functionalized with a Cardio-Specific Peptide.

Nanomaterials (Basel)

January 2025

Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), 48018 Faenza, Italy.

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highliting the urgent need for new therapeutic strategies. Peptide-based therapies have demonstrated significant potential for treating CVDs; however, their clinical application is hindered by their limited stability in physiological fluids. To overcome this challenge, an effective drug delivery system is essential to protect and efficiently transport peptides to their intended targets.

View Article and Find Full Text PDF

Intracellular Membrane Contact Sites in Skeletal Muscle Cells.

Membranes (Basel)

January 2025

Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.

Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle.

View Article and Find Full Text PDF

The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!