Inhibitors of glycoprotein processing enzymes have been shown to have activity against HIV. Several analogues of the known glucosidase I inhibitor, castanospermine (CAST), were synthesized and evaluated for their inhibitory effect on glucosidases and for antiviral activity against Moloney murine leukemia virus (MOLV) and HIV-1. The most effective analogue was 6-O-butanoyl CAST (B-CAST, MDL 28,574) with an IC50 of 0.05 micrograms/mL against MOLV. A correlation between inhibition of glucosidase I and MOLV replication was observed. This analogue was further evaluated against HIV-induced syncytial formation in HeLa T4+ cells and against productive infection in JM cells infected with HIV 1 (GB8 strain). B-CAST showed an IC50 of 0.3 micrograms/mL in the HeLa T4+ assay, compared to CAST at 11 micrograms/mL. The compound also was more potent (IC50:0.15 micrograms/mL) than CAST (4-6 micrograms/mL) in JM cells. The antiretroviral activity of B-CAST was further confirmed in Friend leukemia virus (FLV) infection in mice. B-CAST showed equivalent activity to AZT and was more potent than CAST in inhibiting FLV-induced splenomegaly in mice. The data presented herein suggest the potential of these novel glucosidase inhibitors as anti-HIV agents.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1990.tb17831.xDOI Listing

Publication Analysis

Top Keywords

glycoprotein processing
8
leukemia virus
8
hela t4+
8
cast
5
micrograms/ml
5
inhibition glycoprotein
4
processing hiv
4
hiv replication
4
replication castanospermine
4
castanospermine analogues
4

Similar Publications

Extracellular thiol isomerase ERp5 regulates integrin αIIbβ3 activation by inhibition of fibrinogen binding.

Platelets

December 2025

Cyrus Tang Medical Institute, The Fourth Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.

Recent studies have shown that anti-ERp5 antibodies inhibit platelet activation and thrombus formation; Moreover, ERp5-deficient platelets exhibit enhanced platelet reactivity via regulation of endoplasmic reticulum (ER) stress. In this study, we used a new ERp5-knockout mouse model as well as recombinant ERp5 (rERp5) protein, to examine the role of ERp5 in platelet function and thrombosis. Although platelet-specific ERp5-deficient mice had decreased platelet count, the mice had shortened tail-bleeding times and enhanced platelet accumulation in FeCl-induced mesenteric artery injury, compared with wild-type mice.

View Article and Find Full Text PDF

The impact of signaling pathways on the desmosome ultrastructure in pemphigus.

Front Immunol

January 2025

Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilan-Universität (LMU) Munich, München, Germany.

Introduction: The autoantibody-driven disease pemphigus vulgaris (PV) impairs desmosome adhesion in the epidermis. In desmosomes, the pemphigus autoantigens desmoglein 1 (Dsg1) and Dsg3 link adjacent cells. Dsgs are clustered by plaque proteins and linked to the keratin cytoskeleton by desmoplakin (Dp).

View Article and Find Full Text PDF

Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.

Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.

View Article and Find Full Text PDF

Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133?

J Nanobiotechnology

January 2025

Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.

Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy.

View Article and Find Full Text PDF

Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!