New prophylactic approaches are needed to control infection with the Gram-positive bacterium Staphylococcus aureus, which is a major cause of nosocomial and community-acquired infections. To develop these, greater understanding of protective immunity against S. aureus infection is needed. Human immunity to extracellular Gram-positive bacterial pathogens is primarily mediated by opsonic killing (OPK) via antibodies specific for surface polysaccharides. S. aureus expresses two such antigens, capsular polysaccharide (CP) and poly-N-acetyl glucosamine (PNAG). Here, we have shown that immunization-induced polyclonal animal antisera and monoclonal antibodies specific for either CP or PNAG antigens have excellent in vitro OPK activity in human blood but that when mixed together they show potent interference in OPK activity. In addition, reductions in antibody binding to the bacterial surface, complement deposition, and passive protection were seen in two mouse models of S. aureus infection. Electron microscopy, isothermal calorimetry, and surface plasmon resonance indicated that antibodies to CP and PNAG bound together via an apparent idiotype-anti-idiotype interaction. This interaction was also found in sera from humans with S. aureus bacteremia. These findings suggest that the lack of effective immunity to S. aureus infections in humans could be due, in part, to interference in OPK when antibodies to CP and PNAG antigens are both present. This information could be used to better design S. aureus vaccine components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929724PMC
http://dx.doi.org/10.1172/JCI42748DOI Listing

Publication Analysis

Top Keywords

aureus
8
staphylococcus aureus
8
opsonic killing
8
immunity aureus
8
aureus infection
8
opk antibodies
8
antibodies specific
8
pnag antigens
8
opk activity
8
interference opk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!