Novel Nipah virus immune-antagonism strategy revealed by experimental and computational study.

J Virol

Center for Translational Systems Biology, Department of Neurology, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1137, Annenberg Building 14-94B, Box 1137, New York, NY 10029, USA.

Published: November 2010

Nipah virus is an emerging pathogen that causes severe disease in humans. It expresses several antagonist proteins that subvert the immune response and that may contribute to its pathogenicity. Studies of its biology are difficult due to its high pathogenicity and requirement for biosafety level 4 containment. We integrated experimental and computational methods to elucidate the effects of Nipah virus immune antagonists. Individual Nipah virus immune antagonists (phosphoprotein and V and W proteins) were expressed from recombinant Newcastle disease viruses, and the responses of infected human monocyte-derived dendritic cells were determined. We developed an ordinary differential equation model of the infectious process that that produced results with a high degree of correlation with these experimental results. In order to simulate the effects of wild-type virus, the model was extended to incorporate published experimental data on the time trajectories of immune-antagonist production. These data showed that the RNA-editing mechanism utilized by the wild-type Nipah virus to produce immune antagonists leads to a delay in the production of the most effective immune antagonists, V and W. Model simulations indicated that this delay caused a disconnection between attenuation of the antiviral response and suppression of inflammation. While the antiviral cytokines were efficiently suppressed at early time points, some early inflammatory cytokine production occurred, which would be expected to increase vascular permeability and promote virus spread and pathogenesis. These results suggest that Nipah virus has evolved a unique immune-antagonist strategy that benefits from controlled expression of multiple antagonist proteins with various potencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953155PMC
http://dx.doi.org/10.1128/JVI.01335-10DOI Listing

Publication Analysis

Top Keywords

nipah virus
24
immune antagonists
16
virus
8
experimental computational
8
antagonist proteins
8
virus immune
8
nipah
5
immune
5
novel nipah
4
virus immune-antagonism
4

Similar Publications

Identification of potential therapeutic phytocompounds targeting the G-glycoprotein of Nipah Virus: an in-silico study.

J Biomol Struct Dyn

January 2025

Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.

Public health is seriously threatened by the highly pathogenic zoonotic Nipah virus (NIV). Since no effective medicines or vaccines exist, it is imperative to investigate potential therapeutic molecules against NIV. In this research, we concentrated on the G-glycoprotein of NIV as a potential therapeutic target.

View Article and Find Full Text PDF

Development of nebulized inhalation delivery for fusion-inhibitory lipopeptides to protect non-human primates against Nipah-Bangladesh infection.

Antiviral Res

January 2025

CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France.

Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain.

View Article and Find Full Text PDF

Improving clinical care of patients in Nipah outbreaks: moving beyond 'compassionate use'.

Lancet Reg Health Southeast Asia

February 2025

Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

The 2024 Nipah outbreak in Kerala, India-its fifth in six years-and the recurring annual outbreaks in Bangladesh underscore the persistent threat posed by the Nipah virus (NiV) in the region. With a high mortality rate, human-to-human transmission potential, and the widespread presence of bats, the natural reservoir, NiV remains a significant epidemic threat. Despite being a WHO priority pathogen, there has been no systematic effort to improve patient care for NiVD, leading to consistently poor outcomes.

View Article and Find Full Text PDF

Nipah virus (NiV) is a zoonotic pathogen with the potential to cause human outbreaks with a high case fatality ratio. In this systematic review and meta-analysis, available evidence on NiV infections occurring in healthcare workers (HCWs) was collected and critically appraised. According to the PRISMA statement, four medical databases (PubMed, CINAHL, EMBASE, and Scopus) and the preprint repository medRixv were inquired through a specifically designed searching strategy.

View Article and Find Full Text PDF

The re-emergence of the Nipah virus (NiV) in Kerala, India, following the tragic death of a 14-year-old boy, underscores the persistent threat posed by zoonotic pathogens and highlights the growing global public health challenge. With no vaccine or curative treatment available, and fatality rates as high as 94% in past outbreaks, the Nipah virus is a critical concern for health authorities worldwide. Transmitted primarily through contact with fruit bats or consumption of contaminated food, as well as direct human-to-human transmission, NiV remains a highly lethal and unpredictable pathogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!