Aim: Growing evidence indicates that the glutamatergic system, especially the abnormalities of glutamate and N-methyl-D-aspartate (NMDA) receptors contribute to the pathophysiology and possibly the pathogenesis of major depressive disorders. This study is to evaluate the effect of gan mai da zao (GMDZ) decoction on glutamate and NMDA receptor in unpredictable chronic mild stress (UCMS) rats.
Materials And Methods: Sucrose preference test and open field test were used to estimate the depressive-like behaviors of UCMS rats. Glutamate levels and NMDA receptor subunits (NR1, NR2A and NR2B) in the frontal cortex and hippocampus were determined by HPLC-FLD and by western-blot respectively.
Results: 32 days UCMS induced depressive-like behaviors, increased glutamate concentration and decreased NMDA receptor subunits NR2A and NR2B in the frontal cortex and hippocampus of rats. However, NR1 expression remained constant in stressed rats compared with normal. The GMDZ decoction alleviated the depressive-like behavior, decreased glutamate level, and increased expression of NMDA receptor subunit NR2A and NR2B in the frontal cortex and hippocampus of stressed rats.
Conclusions: These results suggest that GMDZ treatment reversed chronic unpredictable stress-induced depressive-like behaviors in UCMS rats, possibly via reducing glutamate levels and increasing the NMDA receptor subunits NR2A and NR2B in frontal cortex and hippocampus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/13880201003789440 | DOI Listing |
Front Med (Lausanne)
December 2024
Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland.
Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!