Confinement effects on monosaccharide transport in nanochannels.

J Phys Chem B

Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.

Published: September 2010

Transport theories based on the continuum hypothesis may not be appropriate at the nanoscale in view of surface effects. We employed molecular dynamics simulations to study the effects of confinement and concentration on diffusive transport of glucose in silica nanochannels (10 nm or smaller). We found that glucose modifies the electrical properties of nanochannels and that, below 5 nm in channel height, glucose adsorption and diffusivity are significantly reduced. With increasing concentration, the diffusivity is reduced linearly in the bulk, while it is reduced nonlinearly at the interface. The effective diffusivity reduction is related to the interface thickness, which can be 2-4 nm depending on concentration, and has an unexpected reduction at low concentrations. Results suggest that nanochannels present a one-dimensional cage environment that affects diffusivity in a fashion similar to cage-breaking diffusion. Our simulation results, consistent with the experimental observations presented here, suggest that nanoconfinement is the essential cause of the observed altered fluid diffusive transport, not accounted for by classical theories, because of coupling of confinement and concentration effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp103519dDOI Listing

Publication Analysis

Top Keywords

confinement concentration
8
diffusive transport
8
diffusivity reduced
8
confinement effects
4
effects monosaccharide
4
transport
4
monosaccharide transport
4
nanochannels
4
transport nanochannels
4
nanochannels transport
4

Similar Publications

Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.

View Article and Find Full Text PDF

Crystal-facet heterojunction engineering of mesoporous nanoreactors with highly redox-active represents an efficacious strategy for the transformation of CO2 into valuable C2 products (e.g., C2H4).

View Article and Find Full Text PDF

Acetylene semi-hydrogenation catalyzed by Pd single atoms sandwiched in zeolitic imidazolate frameworks hydrogen activation and spillover.

Mater Horiz

January 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.

The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8).

View Article and Find Full Text PDF

A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XPS, XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe-CH/CB excelled in contaminant reduction (7.

View Article and Find Full Text PDF

Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!