Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To facilitate solution deposition of single-walled carbon nanotubes (SWNTs) for integration into electronic devices they need to be purified and dispersed into solutions. The vigorous sonication process for preparing these dispersions leads to large variations in the length and defect density of SWNTs, affecting the resulting electronic properties. Understanding the effects of solution processing steps can have important implications in the design of SWNT films for electronic applications. Here, we alter the SWNTs by varying the sonication time, followed by deposition of sub-monolayer SWNT network films onto functionalized substrates. The corresponding electrical performance characteristics of the resulting field effect transistors (FETs) are correlated with SWNT network sorting and morphology. As sonication exposure increases, the SWNTs shorten, which not only affects electrical current by increasing the number of junctions but also presumably leads to more defects. The off current of the resulting transistors initially increased with sonication exposure, presumably due to less efficient sorting of semiconducting SWNTs as the defect density increases. After extended sonication, the on and off current decreased because of increased bundling and fewer percolation pathways. The final transistor properties are influenced by the nanotube solution concentration, density, alignment, and the selectivity of surface sorting of the SWNT networks. These results show that in addition to chirality, careful consideration of SWNT dispersion conditions that affect SWNT length, bundle diameter, and defect density is critical for optimal SWNT-FET performance and potentially other SWNT-based electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am1005223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!