Folic acid-targeted mesoporous silica nanoparticles for two-photon fluorescence.

J Biomed Nanotechnol

Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, Equipe Chimie Moléculaire et Organisation du Solide, CC1701 Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.

Published: April 2010

New nanotools for the imaging of cancer cells have been synthesized. Two-photon dye-doped 3-aminopropyltriethoxysilane-grafted mesoporous silica nanoparticles (MSN) have been grafted with folic acid (FA) functionalized PEG groups. Amine-PEG groups were first reacted with an activated ester derivative of FA. A mixture of FA- and hydroxyl-PEG has then been reacted with the amino groups at the surface of the particles. Cell culture experiments performed with MCF7 and HeLa cancer cells demonstrated that these functionalized MSN showed a low cytotoxicity even after a 24 hours incubation time at high concentrations. These modified MSN are promising for applications in the field of two-photon imaging and their potentiality for photodynamic therapy is currently being investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2010.1112DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
silica nanoparticles
8
cancer cells
8
folic acid-targeted
4
acid-targeted mesoporous
4
nanoparticles two-photon
4
two-photon fluorescence
4
fluorescence nanotools
4
nanotools imaging
4
imaging cancer
4

Similar Publications

Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.

View Article and Find Full Text PDF

The therapeutic diagnosis of liver diseases has garnered significant interest within the medical community. In recent years, mesoporous silica nanoparticles (MSNs) have emerged as crucial nanocarriers for the treatment of liver ailments. Their remarkable diagnostic capabilities enable them to be used in techniques such as high-throughput mass spectrometry (MS), magnetic resonance imaging (MRI), near-infrared (NIR) fluorescence imaging, photoacoustic imaging (PAI), and ultrasonography (US), attracting considerable attention.

View Article and Find Full Text PDF

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Cadmium translocation combined with metabolomics analysis revealed potential mechanisms of MT@MSN-CS and GSH@MSN-CS in reducing cadmium accumulation in rice (Oryza sativa L.) grains.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.

Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice.

View Article and Find Full Text PDF

Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution.

Environ Res

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.

Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!