Vasorelaxant action of N-p-nitrophenylmaleimide in the isolated rat mesenteric artery.

Z Naturforsch C J Biosci

Escola de Enfermagem e Farmácia (ESENFAR), Universidade Federal de Alagoas, 57072-900 Maceió, AL, Brazil.

Published: September 2010

The vasorelaxant response of N-p-nitrophenylmaleimide (4-NO2-NPM) was evaluated. The mesenteric rings (1-2 mm i.d.) were suspended by cotton thread for isometric tension recordings in a Tyrode's solution at 37 degrees C and gassed with a mixture of 95% O2 and 5% CO2, under a resting tension of 0.75 g. 4-NO2-NPM induced relaxation in mesenteric rings pre-contracted with phenylephrine (Phe; 10 microM, pD2 = 6.7 +/- 0.3) or KCl (80 mM, pD2 = 3.9 +/- 0.2). This effect was significantly attenuated after removal of the vascular endothelium, N(G)-nitro L-arginine methyl ester (L-NAME; 100 microM), atropine (1 microM), indomethacin (10 microM), L-NAME + indomethacin or 1H-[1,2,3]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 microM). L-Arginine (1 mM) reversed the inhibitory effect of L-NAME. In endothelium-intact preparations pre-incubated with 20 mM KCl, tetraethylammonium bromide (TEA; 1 mM) or glibenclamide (Glib; 10 microM), the vasorelaxant effect was significantly attenuated when compared to controls (endothelium intact). In denuded rings, separate incubation with 20 mM KCl, TEA or Glib did not change the relaxation when compared with that obtained in denuded rings. 4-NO2-NPM inhibited in a concentration-dependent and non-competitive manner the concentration-response curves induced by CaCl2. In calcium-free medium, the transient contractions induced by Phe (10 microM) or caffeine (20 mM) were inhibited. The relaxant effect induced by 4-NO2-NPM appeared to be due to endothelial muscarinic receptors activation, NO and prostacyclin release and K(ATP) and BK(Ca) (Ca(2+)-activated K+ channels) endothelium-dependent activation. Inhibition of the Ca2+ influx and inhibition of the Ca2+ release from intracellular IP3- and caffeine-sensitive stores are also involved in the vasorelaxation.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2010-7-806DOI Listing

Publication Analysis

Top Keywords

mesenteric rings
8
phe microm
8
pd2 +/-
8
denuded rings
8
inhibition ca2+
8
microm
7
vasorelaxant action
4
action n-p-nitrophenylmaleimide
4
n-p-nitrophenylmaleimide isolated
4
isolated rat
4

Similar Publications

Decreased blood pressure with acute administration of quercetin in L-NAME-induced hypertensive rats.

Basic Clin Pharmacol Toxicol

January 2025

Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Quercetin is known to reduce blood pressure (BP); however, its acute effects are unclear. We investigated the acute effects of quercetin on BP, aortic mechanical properties and vascular reactivity in female Sprague-Dawley (SD) rats. Hypertension was induced using L-NAME (40 mg/kg/day).

View Article and Find Full Text PDF

Vascular smooth muscle cell PRDM16 regulates circadian variation in blood pressure.

J Clin Invest

December 2024

Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, United States of America.

Disruptions of blood pressure (BP) circadian variation are closely associated with an increased risk of cardiovascular disease (CVD). Thus, gaining insights into the molecular mechanisms of BP circadian variation is essential for comprehending BP regulation. Human genetic analyses suggest that PR domain-containing protein 16 (PRDM16), a transcription factor highly expressed in vascular smooth muscle cells (VSMC), is significantly associated with BP-related traits.

View Article and Find Full Text PDF

The regulation of vascular tone by perivascular tissues is a complex interplay of various paracrine factors. Here, we investigate the anti-contractile effect of skeletal muscle surrounding the femoral and carotid arteries and its underlying mechanisms. Using male and female Wistar rats, we demonstrated that serotonin, phenylephrine, and U-46619 induced a concentration-dependent vasoconstrictor response in femoral artery rings.

View Article and Find Full Text PDF

Arterial hypertension is a highly prevalent chronic disease worldwide, with several etiologies and treatments that may eventually have side effects or result in patients developing tolerance. There is growing interest in traditional medicine and functional foods to isolate biomolecules that could be useful as coadjuvants for treating several aliments. Pitaya, a desert fruit endemic in Mexico, is a rich source of bioactive molecules (betalains and phenolic compounds).

View Article and Find Full Text PDF

3-methoxycatechol causes vasodilation likely via K channels: ex vivo, in silico docking and in vivo study.

Vascul Pharmacol

September 2024

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic. Electronic address:

Substituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!