The equilibrium unbound drug fraction (f(u)) is an important pharmacokinetic parameter, which influences drug elimination and distribution in the body. Commonly the drug plasma concentration is substantially less then that of drug binding proteins, so that f(u) can be assumed constant independent of drug concentration. A general consideration of protein binding based on the mass-action law provides that the unbound drug fraction increases with the increase of drug concentration, which is also a usual experimental observation. For several drugs, though, a seemingly unusual sharp decrease of the unbound drug fraction with the increase of total drug concentration (R(o)) in the interval 0 < R(o) less, similar 5 microM was experimentally observed. A possible explanation of this apparently strange phenomenon is presented. The explanation is based on the consideration of a two-step mechanism of drug protein binding. The first step occurs as a drug binding to the site with relatively low affinity. Consequently this binding leads to the activation of a high affinity site, which otherwise is not available for binding. The suggested binding scheme yields the curves for f(u) dependence on the total drug concentration that are in good agreement with experimental measurements. The interpretation of pharmacokinetic data for the drugs with such unusual concentration dependence of f(u) appears to be a formidable problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.22126 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.
Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.
Ursolic acid, a plant-derived pentacyclic triterpenoid with anti-inflammatory, antioxidant, and other bioactive properties, holds significant potential for use in nutritional supplements and drug development. However, its extraction from medicinal plants is inefficient due to low yield and dependence on seasonality and geography. Herein, we use modular metabolic engineering to enhance ursolic acid production in by dividing the biosynthetic pathway into five modules.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Dental Materials Science, Academic Center for Dentistry (ACTA), University of Amsterdam, Amsterdam, The Netherlands.
Purpose: This study aimed to determine the cytotoxicity (irritant potency) of toothpaste ingredients, of which some had known to have sensitizing properties.
Materials: From the wide variety of toothpaste ingredients, Xylitol, Propylene glycol (PEG), Sodium metaphosphate (SMP), Lemon, Peppermint, Fluoride, Cinnamon, and Triclosan and Sodium dodecyl sulphate (SDS) have been selected for evaluation of their cytotoxic properties.
Methods: Reconstructed human gingiva (RHG) were topically exposed to toothpaste ingredients at different concentrations.
PLoS One
January 2025
Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!