On the possibility of self-induction of drug protein binding.

J Pharm Sci

Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

Published: October 2010

The equilibrium unbound drug fraction (f(u)) is an important pharmacokinetic parameter, which influences drug elimination and distribution in the body. Commonly the drug plasma concentration is substantially less then that of drug binding proteins, so that f(u) can be assumed constant independent of drug concentration. A general consideration of protein binding based on the mass-action law provides that the unbound drug fraction increases with the increase of drug concentration, which is also a usual experimental observation. For several drugs, though, a seemingly unusual sharp decrease of the unbound drug fraction with the increase of total drug concentration (R(o)) in the interval 0 < R(o) less, similar 5 microM was experimentally observed. A possible explanation of this apparently strange phenomenon is presented. The explanation is based on the consideration of a two-step mechanism of drug protein binding. The first step occurs as a drug binding to the site with relatively low affinity. Consequently this binding leads to the activation of a high affinity site, which otherwise is not available for binding. The suggested binding scheme yields the curves for f(u) dependence on the total drug concentration that are in good agreement with experimental measurements. The interpretation of pharmacokinetic data for the drugs with such unusual concentration dependence of f(u) appears to be a formidable problem.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.22126DOI Listing

Publication Analysis

Top Keywords

drug concentration
16
drug
13
protein binding
12
unbound drug
12
drug fraction
12
drug protein
8
binding
8
drug binding
8
total drug
8
concentration
6

Similar Publications

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

Modular Metabolic Engineering of for Enhanced Production of Ursolic Acid.

J Agric Food Chem

January 2025

State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.

Ursolic acid, a plant-derived pentacyclic triterpenoid with anti-inflammatory, antioxidant, and other bioactive properties, holds significant potential for use in nutritional supplements and drug development. However, its extraction from medicinal plants is inefficient due to low yield and dependence on seasonality and geography. Herein, we use modular metabolic engineering to enhance ursolic acid production in by dividing the biosynthetic pathway into five modules.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.

View Article and Find Full Text PDF

In vitro cytotoxicity (irritant potency) of toothpaste ingredients.

PLoS One

January 2025

Department of Dental Materials Science, Academic Center for Dentistry (ACTA), University of Amsterdam, Amsterdam, The Netherlands.

Purpose: This study aimed to determine the cytotoxicity (irritant potency) of toothpaste ingredients, of which some had known to have sensitizing properties.

Materials: From the wide variety of toothpaste ingredients, Xylitol, Propylene glycol (PEG), Sodium metaphosphate (SMP), Lemon, Peppermint, Fluoride, Cinnamon, and Triclosan and Sodium dodecyl sulphate (SDS) have been selected for evaluation of their cytotoxic properties.

Methods: Reconstructed human gingiva (RHG) were topically exposed to toothpaste ingredients at different concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • Many pesticides used in agriculture can accumulate in the environment, exposing bees to multiple substances simultaneously, which is not commonly studied in research.
  • The study focused on the chronic effects of pesticide mixtures on honey bee worker's hemolymph, using concentrations found in their natural environment.
  • Results showed that acetamiprid decreased urea levels significantly, glyphosate had little effect, and tebuconazole, despite being considered safe, caused notable changes in several biochemical markers, indicating a need for further research on fungicides' impact on bees.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!