Hypophysiotropic thyrotropin-releasing hormone (TRH) neurons, the central regulators of the hypothalamic-pituitary-thyroid axis, are located in the hypothalamic paraventricular nucleus (PVN) in a partly overlapping distribution with non-hypophysiotropic TRH neurons. The distribution of hypophysiotropic TRH neurons in the rat PVN is well understood, but the localization of these neurons is unknown in mice. To determine the distribution and phenotype of hypophysiotropic TRH neurons in mice, double- and triple-labeling experiments were performed on sections of intact mice, and mice treated intravenously and intraperitoneally with the retrograde tracer Fluoro-Gold. TRH neurons were located in all parts of the PVN except the periventricular zone. Hypophysiotropic TRH neurons were observed only at the mid-level of the PVN, primarily in the compact part. In this part of the PVN, TRH neurons were intermingled with oxytocin and vasopressin neurons, but based on their size, the TRH neurons were parvocellular and did not contain magnocellular neuropeptides. Co-localization of TRH and cocaine- and amphetamine-regulated transcript (CART) were observed only in areas where hypophysiotropic TRH neurons were located. In accordance with the morphological observations, hypothyroidism increased TRH mRNA content of neurons only at the mid-level of the PVN. These data demonstrate that the distribution of hypophysiotropic TRH neurons in mice is vastly different from the pattern in rats, with a dominant occurrence of these neurosecretory cells in the compact part and adjacent regions at the mid-level of the PVN. Furthermore, our data demonstrate that the organization of the PVN is markedly different in mice and rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932658PMC
http://dx.doi.org/10.1002/cne.22432DOI Listing

Publication Analysis

Top Keywords

trh neurons
40
hypophysiotropic trh
20
neurons
14
distribution hypophysiotropic
12
trh
12
mid-level pvn
12
hypophysiotropic thyrotropin-releasing
8
thyrotropin-releasing hormone
8
hypothalamic paraventricular
8
paraventricular nucleus
8

Similar Publications

Acute and circadian feedforward regulation of agouti-related peptide hunger neurons.

Cell Metab

December 2024

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA. Electronic address:

When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice.

View Article and Find Full Text PDF

A transient neurohormonal circuit controls hatching in fish.

Science

December 2024

Department of Aquaculture and Poultry, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Letziyon, Israel.

Article Synopsis
  • Hatching is a crucial event for egg-laying species, timed to enhance survival during early life stages.
  • Researchers discovered that thyrotropin-releasing hormone (Trh) triggers hatching in zebrafish by creating a temporary circuit that delivers the hormone into the embryo's bloodstream.
  • The study also found that Trh stimulates hatching in a related fish species, highlighting a long-evolved neuroendocrine mechanism controlling this important life event in oviparous fish.
View Article and Find Full Text PDF

Liraglutide and other glucagon-like peptide 1 receptor agonists (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons that inhibit the hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nucleus transcriptomics.

View Article and Find Full Text PDF

Neuroinflammation in the central nervous system (CNS), driven largely by resident phagocytes, has been proposed as a significant contributor to disability accumulation in multiple sclerosis (MS) but has not been addressed therapeutically. Bruton's tyrosine kinase (BTK) is expressed in both B-lymphocytes and innate immune cells, including microglia, where its role is poorly understood. BTK inhibition may provide therapeutic benefit within the CNS by targeting adaptive and innate immunity-mediated disease progression in MS.

View Article and Find Full Text PDF

With the persistent challenge that epilepsy presents to therapeutic avenues, the study seeks to decipher the effects of the ketogenic diet (KD) on gut microbiota and subsequent epileptic outcomes. Mouse fecal samples from distinct KD and control diet (CD) cohorts underwent 16S rRNA sequencing. Differential genes of epileptic mice under these diets were sourced from the GEO database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!