Emerging evidence indicates that mitochondrial carriers are not only crucial for metabolism, but also important for embryonic development. Sideroflexin is a novel family of mitochondrial tricarboxylate carrier proteins, of which the in vivo function is largely unknown. Here, we report on the expression patterns of five sideroflexin genes in Xenopus embryos. Whole-mount in situ hybridization analysis reveals that while sideroflexin2 is expressed in the pancreas, sideroflexin1 and 3 display a complex expression in the central nervous system, somites, pronephros, liver, and pancreas. In contrast, only a weak expression of sideroflexin4 and 5 was detected in embryonic brain. Taken together, the five sideroflexin genes show both overlapping and nonoverlapping expression during Xenopus embryogenesis. As the primary structures of the five sideroflexin proteins are also quite similar, their functional redundancy should be taken into consideration for gene targeting studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.22401 | DOI Listing |
Unlabelled: In vertebrates, germ layer specification represents a critical transition where pluripotent cells acquire lineage-specific identities. We identify the maternal transcription factors Foxi2 and Sox3 to be pivotal master regulators of ectodermal germ layer specification in . Ectopic co-expression of Foxi2 and Sox3 in prospective endodermal tissue induces the expression of ectodermal markers while suppressing mesendodermal markers.
View Article and Find Full Text PDFPigment Cell Melanoma Res
January 2025
Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.
View Article and Find Full Text PDFAm J Hum Genet
December 2024
Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia; Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:
Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects.
View Article and Find Full Text PDFElife
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and (frogs) independently lost electroreception.
View Article and Find Full Text PDFBMC Genomics
December 2024
Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
Background: Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!