A PMMA microfluidic chip-CE device with a multi-segment circular-ferrofluid-driven micromixing injector has been developed for the determination of free bilirubin and its binding capacity by HSA at equilibrium. The design of the device and its fabrication by a low cost CO(2) laser are discussed for intended applications. Under optimized conditions, the total binding capacity of HSA for bilirubin was determined as 16.3±1.4 mg/l00 mL human serum (n=3) and residual binding capacity for bilirubin 9.8 mg/100 mL (n=3) in normal infants. To assess risk of hyperbilirubinemia, free bilirubin and residual binding capacity by HSA provide a better indicator than total bilirubin, as neonates with impaired bilirubin binding capacity could be detected. In addition, residual binding capacity provides an advanced indicator to predict the onset of hyperbilirubinemia before the appearance of free bilirubin. HSA down to 94 nL is used in each titration and a full assay of four titrations takes up 376 nL HSA, sufficient for newborns with HSA in microliter range. The device has shown capable to provide adequate margin of protection to detect an early rising level of bilirubin and impaired binding capacity prior to the onset of jaundice condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200900749 | DOI Listing |
Adv Mater
January 2025
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
NaV(PO), based on multi-electron reactions between V/V/V, is a promising cathode material for SIBs. However, its practical application is hampered by the inferior conductivity, large barrier of V/V, and stepwise phase transition. Herein, these issues are addressed by constructing a medium-entropy material (NaVTiAlCrMnNi(PO), ME-NVP) with strong ME─O bond and highly occupied Na2 sites.
View Article and Find Full Text PDFJ Adv Res
January 2025
School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:
Introduction: In the environment, mycotoxins and fungicides frequently coexist, potentially causing synergistic risks to organisms. Epoxiconazole (EPO) and aflatoxin B1 (AFB1) are a common fungicide and mycotoxins, respectively, which are widely present in the environment and have toxic effects on multiple organs once entering the organism, but it is still unclear whether the co-exposure has a synergistic toxic effect.
Objectives: This study delves into the molecular mechanisms underlying the co-exposure to EPO and AFB1, emphasizing multi-organ toxicity in female zebrafish (F0 generation) and potential transgenerational impacts on the offspring embryos (F1 generation) through multi-omics approaches.
J Hazard Mater
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; In Vitro Diagnostic Technology Innovation Center for Nanobody, No. 1166 Yiyuan Road, Nanchang, Jiangxi Province 330038, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Nanchang 330200, China. Electronic address:
Lateral flow immunoassays (LFAs) are widely used in point-of-care testing (POCT) for detecting small molecules. However, their application is often hindered by the complex synthesis of traditional chemically synthesized antigens. Nanobody-based coating antigen mimics have shown excellent analytical performance in various immunoassay platforms, but their application in LFAs still faces challenges.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (FeONPs) in regulating Cd toxicity in oilseed crops.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.
Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!