The electrophoresis of lambda-DNA is observed in a microscale converging channel where the center-of-masses trajectories of DNA molecules are tracked to measure instantaneous electrophoretic (EP) mobilities of DNA molecules of various stretch lengths and conformations. Contrary to the usual assumption that DNA mobility is a constant, independent of field and DNA length in free solution, we find DNA EP mobility varies along the axis in the contracting geometry. We correlate this mobility variation with the local stretch and conformational changes of the DNA, which are induced by the electric field gradient produced by the contraction. A "shish-kebab" model of a rigid polymer segment is developed, which consists of aligned spheres acting as charge and drag centers. The EP mobility of the shish-kebab is obtained by determining the electrohydrodynamic interactions of aligned spheres driven by the electric field. Multiple shish-kebabs are then connected end-to-end to form a freely jointed chain model for a flexible DNA chain. DNA EP mobility is finally obtained as an ensemble average over the shish-kebab orientations that are biased to match the overall stretch of the DNA chain. Using physically reasonable parameters, the model agrees well with experimental results for the dependence of EP mobility on stretch and conformation. We find that the magnitude of the EP mobility increases with DNA stretch, and that this increase is more pronounced for folded conformations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201000081DOI Listing

Publication Analysis

Top Keywords

dna mobility
12
dna
11
mobility
8
converging channel
8
dna molecules
8
electric field
8
aligned spheres
8
dna chain
8
stretch
5
conformation dependence
4

Similar Publications

The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription.

View Article and Find Full Text PDF

Imported seafood is a reservoir of Enterobacteriaceae carrying CTX-M-encoding genes of high clinical relevance.

Int J Food Microbiol

January 2025

Department of Pathobiology and Population Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom; Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark. Electronic address:

We determined the frequency, genotypes, phenotypes, and mobility of extended-spectrum β-lactamase (ESBL)-encoding genes in Enterobacteriaceae isolated from retail seafood products. Overall, 288 samples of fresh shrimps, catfish and seabass imported from Asia were collected from three supermarket chains in the UK (96 each). After enrichment in MacConkey broth supplemented with cefotaxime, total DNA was screened for the presence of CTX-M, SHV and TEM by real-time PCR.

View Article and Find Full Text PDF

After a long-distance migration, Avars with Eastern Asian ancestry arrived in Eastern Central Europe in 567 to 568 CE and encountered groups with very different European ancestry. We used ancient genome-wide data of 722 individuals and fine-grained interdisciplinary analysis of large seventh- to eighth-century CE neighbouring cemeteries south of Vienna (Austria) to address the centuries-long impact of this encounter. We found that even 200 years after immigration, the ancestry at one site (Leobersdorf) remained dominantly East Asian-like, whereas the other site (Mödling) shows local, European-like ancestry.

View Article and Find Full Text PDF

The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by HO are still unknown.

View Article and Find Full Text PDF

Microrheology has become an indispensable tool for measuring the dynamics of macromolecular systems. Yet, its ability to characterize polymer dynamics across spatiotemporal scales, which vary among polymers and concentration regimes, is limited by the selection of probe morphologies and sizes. Here, we introduce semiflexible M13 phage as a powerful microrheological probe able to circumvent these constraints to robustly capture the dynamics of polymeric solutions across decades of concentrations, sizes, and ionic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!