Hepcidin is a key regulator responsible for systemic iron homeostasis. A semi-mechanistic PK model for hepcidin and a fully human anti-hepcidin monoclonal antibody (Ab 12B9m) was developed to describe their total (free + bound) serum concentration-time data after single and multiple weekly intravenous or subcutaneous doses of Ab 12B9m. The model was based on target mediated drug disposition and the IgG-FcRn interaction concepts published previously. Both total Ab 12B9m and total hepcidin exhibited nonlinear kinetics due to saturable Fc-FcRn interaction. Ab 12B9m showed a limited volume of distribution and negligible linear elimination from serum. The nonlinear elimination of Ab 12B9m was attributed to the endosomal degradation of Ab 12B9m that was not bound to the FcRn receptor. The terminal half-life, assumed to be the same for free and total serum Ab 12B9m, was estimated to be 16.5 days. The subcutaneous absorption of Ab 12B9m was described with a first-order absorption rate constant k(a) of 0.0278 h⁻¹, with 86% bioavailability. The model suggested a rapid hepcidin clearance of approximately 800 mL h⁻¹ kg⁻¹. Only the highest-tested Ab 12B9m dose of 300 mg kg⁻¹ week⁻¹ was able to maintain free hepcidin level below the baseline during the dosing intervals. Free Ab 12B9m and free hepcidin concentrations were simulated, and their PK profiles were nonlinear as affected by their binding to each other. Additionally, the total amount of FcRn receptor involved in Ab 12B9m recycling at a given time was calculated empirically, and the temporal changes in the free FcRn levels upon Ab 12B9m administration were inferred.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977007 | PMC |
http://dx.doi.org/10.1208/s12248-010-9222-0 | DOI Listing |
AAPS J
May 2016
Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, California, USA.
Hepcidin (H25) is a hormone peptide synthesized by the liver that binds to ferroportin and blocks iron export. In this study, H25 was inhibited by administration of single and multiple doses of an anti-H25 monoclonal antibody Ab 12B9m in cynomolgus monkeys. The objective of this analysis was to develop a pharmacodynamic model describing the role of H25 in regulating iron homeostasis and the impact of hepcidin inhibition by Ab 12B9m.
View Article and Find Full Text PDFBlood
October 2013
Department of Oncology.
Iron maldistribution has been implicated in the etiology of many diseases including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino-acid peptide. Hepcidin is induced by inflammation and causes iron to be sequestered within cells of the reticuloendothelial system, suppressing erythropoiesis and blunting the activity of erythropoiesis stimulating agents (ESAs).
View Article and Find Full Text PDFAAPS J
December 2010
AMGEN, Thousand Oaks, California 91320, USA.
Hepcidin is a key regulator responsible for systemic iron homeostasis. A semi-mechanistic PK model for hepcidin and a fully human anti-hepcidin monoclonal antibody (Ab 12B9m) was developed to describe their total (free + bound) serum concentration-time data after single and multiple weekly intravenous or subcutaneous doses of Ab 12B9m. The model was based on target mediated drug disposition and the IgG-FcRn interaction concepts published previously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!