Urinary hepcidin: an inverse biomarker of acute kidney injury after cardiopulmonary bypass?

Curr Opin Crit Care

Department of Intensive Care Medicine, Austin Health, Heidelberg, Victoria, Australia.

Published: December 2010

Purpose Of Review: In this review, we discuss the potential role of urinary hepcidin, a 2.8-kDa hormonal regulator of iron metabolism, as a biomarker of acute kidney injury (AKI) after cardiopulmonary bypass.

Recent Findings: Hepcidin is one of the novel biomarkers of AKI that have been identified using hypothesis-free, proteomic analysis of urine or plasma in patients who develop AKI. Collectively, these markers promise a new era for the early diagnosis and treatment of AKI in the ICU and an understanding of their biological role may also provide mechanistic insights into the pathogenesis of AKI. Although data confirming the association between urinary hepcidin and AKI are as yet limited, we believe hepcidin is of particular interest because hepcidin may be a biomarker specific to cardiopulmonary bypass-associated AKI; as a central regulator of iron metabolism, hepcidin could play a biological role in the pathogenesis of AKI after cardiopulmonary bypass; and hepcidin displays an intriguing negative association with AKI, in that a smaller increase in hepcidin from baseline after cardiopulmonary bypass appears to predict greater chance of developing AKI.

Summary: Smaller increases in urinary hepcidin, a central regulator of iron metabolism, may be associated with greater risk of AKI after cardiopulmonary bypass. Further research is required to establish the significance and nature of this association.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MCC.0b013e32833ecdccDOI Listing

Publication Analysis

Top Keywords

urinary hepcidin
16
regulator iron
12
iron metabolism
12
aki cardiopulmonary
12
cardiopulmonary bypass
12
aki
10
hepcidin
9
biomarker acute
8
acute kidney
8
kidney injury
8

Similar Publications

MEHP induced mitochondrial damage by promoting ROS production in CIK cells, leading to apoptosis, autophagy, cell cycle arrest.

Comp Biochem Physiol C Toxicol Pharmacol

February 2025

Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:

Although Mono (2-ethylhexyl) phthalate (MEHP) is a metabolite of Di (2-ethylhexyl) phthalate (DEHP), it has been confirmed to exhibit stronger biological toxicity than DEHP. Mitochondrial dynamic homeostasis and normal mitochondrial function regulate numerous physiological and pathological processes. However, it remains unclear whether MEHP triggers apoptosis, autophagy, and cell cycle arrest in grass carp kidney (CIK) cells by causing mitochondrial damage.

View Article and Find Full Text PDF

Glucose induced regulation of iron transporters implicates kidney iron accumulation.

Biochim Biophys Acta Gen Subj

November 2024

Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:

Increased iron level is detected in rat kidney and human urine in diabetic condition and implicated in associated nephropathy. However, the biological cue and mechanism of the iron accumulation remain unclear. Here we reveal that glucose increases iron uptake by promoting transferrin receptor 1 (TFRC) in kidney cells by a translational mechanism but does not alter expression of endosomal iron transporter DMT1.

View Article and Find Full Text PDF

Disruption of any stage of iron homeostasis, including uptake, utilization, efflux, and storage, can cause progressive damage to peripheral organs. The health hazards associated with occupational exposure to inhalation anesthetics (IA) in combination with chronic iron overload are not well documented. This study aimed to investigate changes in the concentration of essential metals in the peripheral organs of rats after iron overload in combination with IA.

View Article and Find Full Text PDF

Context: Chronic kidney disease (CKD) leads to alterations in fibroblast growth factor 23 (FGF23) and the renal-bone axis. This may be partly driven by altered inflammation and iron status. Vitamin D supplementation may reduce inflammation.

View Article and Find Full Text PDF

The available evidence suggests that the kidney may contribute importantly to the development of an iron deficiency state in patients with heart failure and may be injured by therapeutic efforts to achieve iron repletion. The exceptional workload of the proximal renal tubule requires substantial quantities of iron for ATP synthesis, which it derives from Fe bound to transferrin in the bloodstream. Following ferrireduction, Fe is conveyed by divalent transporters (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!