Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr(69)-phosphorylated alone, Thr(69)- and Thr(36)/Thr(45)-phosphorylated, all these plus Ser(64) phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr(36)/Thr(45) phosphorylation alone was detected without Thr(69) phosphorylation, and neither was Ser(64) phosphorylation without Thr(36)/Thr(45)/Thr(69) phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr(69), Thr(36)/Thr(45), and Ser(64) residues, with 4E-BP1 remaining phosphorylated at Thr(69) alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr(36)/Thr(45) and Ser(64), in addition to Thr(69). Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr(69) is phosphorylated first followed by Thr(36)/Thr(45) phosphorylation, and Ser(64) is phosphorylated last. Thr(69) phosphorylation alone allows binding to eIF4E, and subsequent Thr(36)/Thr(45) phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966049PMC
http://dx.doi.org/10.1074/jbc.M110.135103DOI Listing

Publication Analysis

Top Keywords

4e-bp1 phosphorylation
16
phosphorylation
15
4e-bp1
12
control conditions
12
thr36/thr45 phosphorylation
12
hierarchical phosphorylation
8
translational repressor
8
protein 4e-bp1
8
ischemia-reperfusion stress
8
phosphorylation 4e-bp1
8

Similar Publications

Poststroke hyperglycemia dysregulates cap-dependent translation in neural cells.

Life Sci

December 2024

Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States. Electronic address:

Aims: Post stroke hyperglycemia has been shown to deter functional recovery. Earlier findings have indicated the cap-dependent translation regulator 4E-BP1 is detrimentally upregulated in hyperglycemic conditions. The present study aims to test the hypothesis that hyperglycemic ischemic reperfusion injury (I/R) affects normal protein translation poststroke.

View Article and Find Full Text PDF

Tuspetinib (TUS) is a well-tolerated, once daily, oral kinase inhibitor in clinical development for treatment of AML. Nonclinical studies show that TUS targets key pro-survival kinases with IC50 values in the low nM range, including SYK, wildtype and mutant forms of FLT3, mutant but not wildtype forms of KIT, RSK2 and TAK1-TAB1 kinases, and indirectly suppresses expression of MCL1. Oral TUS markedly extended survival in subcutaneously and orthotopically inoculated xenograft models of FLT3 mutant human AML, was well tolerated, and delivered enhanced activity when combined with venetoclax or 5-azacytidine.

View Article and Find Full Text PDF

Juvenile hormone (JH) plays a pivotal role in regulating post-emergence development and metabolism in previtellogenic female Aedes aegypti mosquitoes. In contrast, yolk protein precursor production and egg maturation after a blood meal are regulated by the steroid hormone 20-hydroxyecdysone, the insulin-like growth factor (IGF)/insulin signaling (IIS) pathway, and the mammalian target of rapamycin (mTOR) pathway. The role of IIS/mTOR signaling in female adults prior to blood feeding has not been thoroughly investigated.

View Article and Find Full Text PDF

Background: Neuroblastoma (NB) is the most common extracranial solid tumor in children, and the AURKA gene encodes a protein kinase involved in cell cycle regulation that plays an oncogenic role in a variety of human cancers. The aim of this study was to validate the biological function and prognostic significance of AURKA in NB using basic experiments and bioinformatics.

Methods: Data obtained from Target and GEO databases were analyzed using various bioinformatic techniques.

View Article and Find Full Text PDF
Article Synopsis
  • Sarcopenia, the age-related loss of muscle mass, may stem from anabolic resistance and disrupted cellular signaling, but it's uncertain if aging alone causes these issues or if other factors play a role.!* -
  • In a study with lean young men (average age 22) and old men (average age 70), participants performed resistance exercise followed by essential amino acid intake, with muscle biopsies taken at several intervals to measure amino acid levels and muscle protein synthesis (MPS).!* -
  • Results showed both age groups had similar peak amino acid levels after exercise, but older individuals had heightened anabolic signaling in resting muscles, suggesting age may affect muscle recovery differently despite comparable exercise responses.!*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!