Recently, many object localization models have shown that incorporating contextual cues can greatly improve accuracy over using appearance features alone. Therefore, many of these models have explored different types of contextual sources, but only considering one level of contextual interaction at the time. Thus, what context could truly contribute to object localization, through integrating cues from all levels, simultaneously, remains an open question. Moreover, the relative importance of the different contextual levels and appearance features across different object classes remains to be explored. Here we introduce a novel framework for multiple class object localization that incorporates different levels of contextual interactions. We study contextual interactions at the pixel, region and object level based upon three different sources of context: semantic, boundary support, and contextual neighborhoods. Our framework learns a single similarity metric from multiple kernels, combining pixel and region interactions with appearance features, and then applies a conditional random field to incorporate object level interactions. To effectively integrate different types of feature descriptions, we extend the large margin nearest neighbor to a novel algorithm that supports multiple kernels. We perform experiments on three challenging image databases: Graz-02, MSRC and PASCAL VOC 2007. Experimental results show that our model outperforms current state-of-the-art contextual frameworks and reveals individual contributions for each contextual interaction level as well as appearance features, indicating their relative importance for object localization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2010.2068556 | DOI Listing |
Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.
View Article and Find Full Text PDFSci Rep
January 2025
School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.
View Article and Find Full Text PDFUnlabelled: Ultrasound imaging plays an important role in the early detection and management of breast cancer. This study aimed to evaluate the imaging performance of a range of clinically-used breast ultrasound systems using a set of novel spherical lesion contrast-detail (C-D) and anechoic-target (A-T) phantoms.
Methods: C-D and A-T phantoms were imaged using a range of clinical breast ultrasound systems and imaging modes.
Sensors (Basel)
January 2025
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
With the rapid development of AI algorithms and computational power, object recognition based on deep learning frameworks has become a major research direction in computer vision. UAVs equipped with object detection systems are increasingly used in fields like smart transportation, disaster warning, and emergency rescue. However, due to factors such as the environment, lighting, altitude, and angle, UAV images face challenges like small object sizes, high object density, and significant background interference, making object detection tasks difficult.
View Article and Find Full Text PDFSensors (Basel)
January 2025
The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.
The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!