Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The relationship between DNA methylation, histone modifications and terminal differentiation in cardiomyocytes was investigated in this study. The upregulation of methylation-related proteins, including DNA methyltransferase (DNMT) 1, methyl-CpG binding domain proteins 1, 2 and 3, and the increase in global methylation during rat neonatal heart development were observed. Moreover, an increase in DNA synthesis and a delay in differentiation were found in 5-azacytidine (5-azaC)-treated cardiomyocytes. Increase in acetylation of H3-K9, H4-K5, H4-K8 and methylation of H3-K4 suggested a more accessible chromatin structure in 5-azaC-treated cells. Furthermore, methyl-CpG-binding protein 2 was found to be upregulated in differentiated cardiomyocytes. Overexpression of this protein resulted in an increase of global methylation levels. Therefore, we suggest that a hypermethylated genome and a more compact chromatin structure are formed during terminal differentiation of cardiomyocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2010.08.064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!