A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expression of COX-1 and COX-2 in the endometrium of cyclic, pregnant and in a model of pseudopregnant rats and their regulation by sex steroids. | LitMetric

Background: Cyclooxygenases (COXs) are the rate limiting enzymes in the process of prostaglandins (PGs) synthesis, which are critical regulators of a number of reproductive processes, including ovulation, implantation, decidualization and parturition. The aim of the present study was to investigate the expression and regulation of COX-1 and COX-2 and levels of prostaglandins during rat pregnancy, in a model of pseudopregnancy and estrous cycle.

Methods: Uteri were collected from the cyclic rats on each day of estrous cycle, after every two days for pregnant (days 2 to 22) and pseudopregnant rats (days 1 to 9). In vitro primary endometrial stromal cells were cultured in the presence of steroid hormones and their respective inhibitors for the possible modulation of COX-1 and COX-2. Endometrial protein extracts were used for western blot analysis and tissue sections were prepared for protein localization using immunofluorescence. Measurements of PGF2alpha and PGE2 metabolites in serum were performed by enzyme immunoassay (EIA).

Results: COX-1 expression was found to be elevated during implantation and parturition, however, the levels of COX-1 decreased during decidualization periods. COX-2 was detected during early pregnancy from day 2 to 5, increased during decidual regression, and was also expressed at the time of parturition. COX-2 protein expression was found to be increased at estrus phase in cyclic rats. Both enzymes were found to be modulated in the endometrium of pseudopregnant rats, suggesting that they are regulated by 17beta-estradiol and progesterone. A significant increase in PGE2 metabolite levels was observed on day 10, 12 and 14 of pregnancy. However, an increase in PGF2alpha metabolite levels was observed only on day 14. The concentration of both these metabolites changed during pseudopregnancy and maximum levels were observed at day 7. Significant increase in PGE2 metabolite was observed at proestrus phase, on the other hand, PGF2alpha metabolite was significantly increased at proestrus and metestrus phase. COX-2 protein was regulated by 17beta-estradiol in cultured endometrial stromal cells which was blocked in the presence of ICI-182,780.

Conclusions: Taken together, these results suggest that COX-1 and COX-2 could be differentially regulated by steroid hormones and might be the key factors involved in embryo implantation, decidualization, decidua basalis regression and parturition in rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936314PMC
http://dx.doi.org/10.1186/1477-7827-8-103DOI Listing

Publication Analysis

Top Keywords

cox-1 cox-2
16
pseudopregnant rats
12
levels observed
12
observed day
12
implantation decidualization
8
cyclic rats
8
endometrial stromal
8
stromal cells
8
steroid hormones
8
cox-2 protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!