AI Article Synopsis

  • The study investigates the therapeutic effects of transplanting bone marrow-derived mesenchymal stromal cells (MSC) into a mouse model of Duchenne muscular dystrophy.
  • Behavioral and locomotor tests showed significant improvement in mobility and increased expression of dystrophin and utrophin in treated mice over a period of 15 weeks post-transplant.
  • The findings suggest that MSC transplantation could be a valuable treatment approach for muscular dystrophy, although the median lifespan of treated mice remained shorter than that of healthy mice.

Article Abstract

Background Aims: We explored the potential therapeutic value of transplanting bone marrow (BM)-derived mesenchymal stromal cells (MSC) into utrophin/dystrophin-deficient double knock-out (dko) mice, a murine model of Duchenne muscular dystrophy.

Methods: MSC from male rats were isolated and transplanted into female dko mice via the caudal vein. Behavior and locomotor function were later evaluated, along with the expression of dystrophin and utrophin in the sarcolemma of myofiber tissues. The presence of grafted cells was confirmed via polymerase chain reaction for the sex-determining region of the Y-chromosome.

Results: Locomotor activity improved significantly (P < 0.05) from 5 to 15 weeks after cell transplantation, as measured by traction, rotating rod and running wheel tests. We also found that the expression of dystrophin and utrophin increased significantly (P < 0.05) and progressively in the sarcolemma from 5 to 15 weeks after transplantation. The median lifespan of mice in the normal group (74.1 weeks) was significantly (P < 0.001) higher than those in the control (22.0 weeks) and transplantation (35.0 weeks) groups, and the median lifespan of mice in the transplantation group was significantly (P < 0.001) higher than that in the control group.

Conclusions: Results of this study demonstrate that BM MSC have potential value in xenogeneic transplantation therapy for muscular dystrophy.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14653249.2010.510502DOI Listing

Publication Analysis

Top Keywords

dko mice
12
mesenchymal stromal
8
stromal cells
8
expression dystrophin
8
dystrophin utrophin
8
weeks transplantation
8
median lifespan
8
lifespan mice
8
0001 higher
8
higher control
8

Similar Publications

LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK.

Mol Metab

January 2025

Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA. Electronic address:

Objective: Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Proteoglycans like biglycan (Bgn) and decorin (Dcn) are crucial for bone health, primarily by attracting water through their unique structures, but their specific functions are not fully understood.
  • Research using knockout mouse models revealed that Bgn deficiency leads to significant bone loss and reduced resilience, while Dcn appears to have a less pronounced impact, although it compensates when Bgn is absent.
  • Both Bgn and Dcn are essential for important signaling pathways in bone maintenance, with Bgn playing a dominant role in preserving bone structure and hydration levels.
View Article and Find Full Text PDF

Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.

View Article and Find Full Text PDF

Group 1 innate lymphoid cells protect liver transplants from ischemia-reperfusion injury via an interferon-γ-mediated pathway.

Am J Transplant

December 2024

The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Department of Surgery, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

As important immune regulatory cells, whether innate lymphoid cells (ILCs) are involved in liver transplantation (LT) remains unclear. In a murine orthotopic LT model, we dissected roles of ILCs in liver ischemia-reperfusion injury (IRI). Wild type (WT) grafts suffered significantly higher IRI in Rag2-γc double knockout (DKO) than Rag2 KO recipients, in association with downregulation of group 1 ILCs genes, including IFN-γ.

View Article and Find Full Text PDF

Background: Wild-type (WT) mice fed a conventional high-fat/high-sucrose diet (HFHSD) rarely develop metabolic dysfunction-associated steatohepatitis (MASH) with HCC. Because mouse bile acid (BA) is highly hydrophilic, we hypothesized that making it hydrophobic would lead to MASH with HCC.

Methods: Eleven-week-old WT and Cyp2a12/Cyp2c70 double knockout (DKO) mice were divided into two groups, including one which was fed a normal chow diet, and one which was fed an HFHSD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!