This paper is devoted to the consideration of the mechanisms of electrostimulation of excitable tissues used in remedial medicine. Community of biophysical principles underlying the Weiss-Lapique and Dubois-Reymond laws is emphasized. The action of stimulating pulses on biological tissues and its consequences are analysed with reference to their shape (rectangular, triangular, and exponential). It is shown that the shape of the accommodation curve depends on the shape of stimulating pulses and physiological conditions of the tissue.
Download full-text PDF |
Source |
---|
J Appl Physiol (1985)
September 2024
Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, United Kingdom.
Impaired pharyngeal sensing of negative pressure (NP) can lead to a blunted response of the upper airway dilator muscles and contribute to the development of obstructive sleep apnea (OSA). This response is modulated by the nerve fibers in the internal branch of the superior laryngeal nerve (iSLN), mediating negative pressure sensation. Artificial excitation of these fibers could be a potential treatment target for OSA.
View Article and Find Full Text PDFSci Rep
January 2024
University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
Electric pulses used in electroporation-based treatments have been shown to affect the excitability of muscle and neuronal cells. However, understanding the interplay between electroporation and electrophysiological response of excitable cells is complex, since both ion channel gating and electroporation depend on dynamic changes in the transmembrane voltage (TMV). In this study, a genetically engineered human embryonic kidney cells expressing Na1.
View Article and Find Full Text PDFExp Neurol
January 2024
Rancho Research Institute, Los Amigos National Rehabilitation Center, Downey, CA 90242, USA; University of Southern California Neurorestoration Center, Keck School of Medicine, Los Angeles, CA 90033; USA; Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona 08916, Spain.
Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs and their input-output profile elicited by pulses delivered to peripheral nerves.
View Article and Find Full Text PDFbioRxiv
July 2023
Rancho Research Institute, Downy, CA 90242, USA; Los Amigos National Rehabilitation Center.
Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs on the dorsal cord and their input-output profile elicited by pulses delivered to peripheral nerves.
View Article and Find Full Text PDFFront Mol Neurosci
September 2022
Faculty of Mechatronics, The Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland.
Spinal cord injuries and neurodegenerative diseases, including Parkinson's, Alzheimer's, and traumatic brain injuries, remain challenging to treat. Nowadays, neural stem cell therapies excite high expectations within academia. The increasing demand for innovative solutions in regenerative medicine has drawn considerable attention to graphene materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!