To examine the relative role of halogen bonding and hydrophobic interactions in the inhibition of human CK2alpha by 4,5,6,7-tetrabromobenzotriazole (TBBt), we have synthesized a series of 5-substituted benzotriazoles (Bt) and the corresponding 5-substituted 4,6,7-tribromobenzotriazoles (Br3Bt) and examined their inhibition of human CK2alpha relative to that of TBBt. The various C(5) substituents differ in size (H and CH3), electronegativity (NH2 and NO2), and hydrophobicity (COOH and Cl). Some substituents were halogen bond donors (Cl, Br), while others were fluorine bond donors (F and CF3). Most of the 5-substituted analogues of Br3Bt (with the exception of COOH and NH2) exhibited inhibitory activity comparable to that of TBBt, whereas the 5-substituted analogues of the parent Bt were only weakly active (Br, Cl, NO2, CF3) or inactive. The observed effect of the volume of a ligand molecule pointed to its predominant role in inhibitory activity, indicating that presumed halogen bonding, identified in crystal structures and by molecular modeling, is dominated by hydrophobic interactions. Extended QSAR analysis additionally pointed to the monoanion and a preference for the N(1)-H protomer of the neutral ligand as parameters crucial for prediction of inhibitory activity. This suggests that the monoanions of TBBt and its congeners are the active forms that efficiently bind to CK2alpha, and the binding affinity is coupled with protomeric equilibrium of the neutral ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp102848yDOI Listing

Publication Analysis

Top Keywords

hydrophobic interactions
12
inhibition human
12
inhibitory activity
12
relative role
8
role halogen
8
interactions inhibition
8
halogen bonding
8
human ck2alpha
8
bond donors
8
5-substituted analogues
8

Similar Publications

The human cellular cytidine deaminases APOBEC3s (A3s) inhibit virion infectivity factor (Vif)-deficient HIV-1 replication. However, virus-encoded Vifs abolish this defense system by specifically recruiting A3s to an E3 ubiquitin ligase complex to induce their degradation. The highly conserved Vif PPLP motif is critical for the Vif-mediated antagonism of A3s and is believed to be important for Vif multimerization.

View Article and Find Full Text PDF

Unlabelled: Respiratory syncytial virus (RSV) infections continue to plague infants, young children, and older individuals worldwide. Since there is no specific treatment for RSV, characterizing the interactions between RSV and host factors remains crucial for the eventual development of robust therapeutic interventions. In our previous study, guanylate binding protein 5 (GBP5) was shown to promote excessive RSV-small hydrophobic (RSV-SH) protein secretion by microvesicles and inhibited viral replication.

View Article and Find Full Text PDF

Cannabinoid and stilbenoid compounds derived from were screened against eight specific fungal protein targets to identify potential antifungal agents. The proteins investigated included Glycosylphosphatidylinositol (GPI), Enolase, Mannitol-2-dehydrogenase, GMP synthase, Dihydroorotate dehydrogenase (DHODH), Heat shock protein 90 homolog (Hsp90), Chitin Synthase 2 (CaChs2), and Mannitol-1-phosphate 5-dehydrogenase (M1P5DH), all of which play crucial roles in fungal survival and pathogenicity. This research evaluates the binding affinities and interaction profiles of selected cannabinoids and stilbenoids with these eight proteins using molecular docking and molecular dynamics simulations.

View Article and Find Full Text PDF

For the first time asymmetric and symmetric carboxytriazoleimidazolium derivatives with different structures were synthesized. The critical micellization concentration (CMC) value was estimated using a pyrene fluorescent probe and the solubility of Orange OT. The complexation ability of carboxytriazoleimidazolium derivatives toward bovine serum albumin (BSA) has been investigated by various physico-chemical methods: fluorescence spectroscopy, electrophoretic light scattering and circular dichroism.

View Article and Find Full Text PDF

Existing chemotherapeutic approaches against refractory cancers are ineffective due to off-target effects, inefficient delivery, and inadequate accumulation of anticancer drugs at the tumor site, which causes limited efficiency of drug treatment and toxicity to neighboring healthy cells. The development of nano-based drug delivery systems (DDSs) with the goal of delivering desired therapeutic doses to the diseased cells and has already proven to be a promising strategy to address these challenges. Our study focuses on achieving an efficient tumor-targeted delivery of a combination of drugs for therapeutic benefits by developing a versatile DDS by following a simple one-step chemical approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!