Genes that regulate renal branching morphogenesis are likely to indirectly regulate nephron endowment, but few have been validated to do so in vivo. PTPN11, which encodes the nonreceptor protein tyrosine phosphatase Shp2, acts downstream of receptor tyrosine kinases to modulate the Ras-MAPK pathway and has been implicated in branching morphogenesis in vitro and in invertebrates, and is therefore a candidate in vivo regulator of nephron number. In this work, heterozygous null mutant Shp2(+/-) mice at postnatal days 30-35 were compared with their wild-type (WT) littermates using unbiased stereology to determine if, indeed, the former had decreased nephron number due to their 50% decrease in gene/protein dosage. Although there was a trend toward decreases in total glomerular (nephron) number and kidney volume in Shp2(+/-) mice compared with WT, neither difference was statistically significant (11310 vs. 12198 glomeruli, P = 0.22; 62.8 mm(3) vs. 66.0 mm(3) renal volume; P = 0.40). We conclude that loss of 50% gene/protein dosage of PTPN11/Shp2 is insufficient to affect glomerular (and thereby nephron) number in mouse kidneys in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992585 | PMC |
http://dx.doi.org/10.1002/ar.21236 | DOI Listing |
Sci Rep
January 2025
The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy.
View Article and Find Full Text PDFIntroduction: Metabolic syndrome (MetS) and chronic kidney disease are both important risk factors for cardiovascular disease and are closely related to each other. We retrospectively investigated whether MetS or its components increase the risk of development of impaired kidney function in the Japanese general population.
Methods: This is a retrospective cohort study which enrolled 14917 participants who visited our hospital for physical checkups from 2008 to 2018 and had normal estimated glomerular filtration rate (eGFR≥60 mL/min/1.
Cell Death Dis
December 2024
Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
Acute kidney injury (AKI) is a significant global health issue, which is often caused by cisplatin therapy and characterized by mitochondrial dysfunction. Restoring mitochondrial homeostasis in tubular cells could exert therapeutic effects. Here, we investigated Slc25a21, a mitochondrial carrier, as a potential target for AKI intervention.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Mitochondrial dysfunction is a critical factor in the pathogenesis of Alport syndrome (AS), contributing to podocyte injury and disease progression. Ezetimibe, a lipid-lowering drug, is known to inhibit cholesterol and fatty acid uptake and to reduce triglyceride content in the kidney cortex of mice with AS. However, its effects on lipid droplet (LD) utilization by mitochondria have not been explored.
View Article and Find Full Text PDFBJU Int
December 2024
Department of Urology, UC San Diego School of Medicine, La Jolla, California, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!