Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles.

Appl Opt

Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA.

Published: August 2010

The extinction efficiency factor associated with the scattering of a plane electromagnetic wave impinging on a basal face of a dielectric disk or a cylindrical particle is investigated by employing the physical-geometric optics hybrid (PGOH) method and the discrete-dipole approximation (DDA) method. It is found that the derived extinction efficiency factor from the PGOH is a function of the thickness of the disk, or the length of the cylinder, and the refractive index, but is independent of the diameter and shape of the cross section of the basal face of the particle. Furthermore, the oscillations of the extinction efficiency factor versus the thickness or length of the particle do not diminish if the particle is not absorptive. The values of the extinction efficiency factor simulated from the DDA method are quite different from those computed from the PGOH, although the size parameter of the particle is in the commonly recognized geometric optics regime. To explain the difference, the concept of the edge effect associated with the tunneling rays in the semiclassical scattering theory is generalized from the case of spherical particles to that of nonspherical particles based on the localization principle. Accordingly, the edge-effect contribution can be distinguished and removed from the extinction cross section calculation by the DDA method. The remaining part of the extinction cross section, associated with the interference between the transmitted rays and incident rays, agrees well with the results computed from the PGOH, and the agreement illustrates the presence of the edge effect in the case of nonspherical particles with surfaces that have no curvature along the incident direction. It is found that the asymptotic extinction efficiency factor may not necessarily converge to 2, but it depends on the specific physical processes of the interference between diffracted and transmitted light and of the edge effect.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.49.004641DOI Listing

Publication Analysis

Top Keywords

extinction efficiency
20
efficiency factor
20
dda method
12
edge-effect contribution
8
extinction
8
basal face
8
computed pgoh
8
nonspherical particles
8
extinction cross
8
efficiency
5

Similar Publications

Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes.

View Article and Find Full Text PDF

A Spiro-Based NIR-II Photosensitizer with Efficient ROS Generation and Thermal Conversion Performances for Imaging-Guided Tumor Theranostics.

Adv Healthc Mater

January 2025

Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.

Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.

View Article and Find Full Text PDF

Rational Design of Quinoidal Conjugated Polymers for Photothermal Antibacterial Therapy.

Macromol Rapid Commun

January 2025

School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.

The increasing prevalence of antibiotic resistance, driven by the overuse and misuse of conventional antibiotics, has become a critical public health concern. Photothermal antibacterial therapy (PTAT) utilizes heat generated by photothermal agents under light exposure to inhibit bacterial growth without inducing resistance, attracting more and more attention. Quinoid conjugated polymers, especially para-azaquinodimethane (AQM) polymer, are a class of organic semiconductors known for efficient π-electron delocalization, near-infrared absorption, and narrow bandgap, showing great potential in the application of photothermal reagents.

View Article and Find Full Text PDF

Deciphering Plant NLR Genomic Evolution: Synteny-Informed Classification Unveils Insights into TNL Gene Loss.

Mol Biol Evol

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of micro-synteny information.

View Article and Find Full Text PDF

Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.).

Plant Mol Biol

January 2025

Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.

Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!