Macrolide antibiotics are well known for their antibacterial and anti-inflammatory properties. This article provides an overview of the biological mechanisms through which macrolides exert this 'double effect'. Their antibacterial effect consists of the inhibition of bacterial protein synthesis, impaired bacterial biofilm synthesis, and the attenuation of other bacterial virulence factors. Apart from these direct antimicrobial effects, macrolides are known for their modulating effect on many components of the human immune system. By influencing the production of cytokines, they have a dampening effect on the proinflammatory response. Furthermore, the majority of cells involved in the immune response are, in one way or another, influenced when macrolide antibiotics are administered. Having such an obvious effect on the various aspects of the immune system, macrolides seem to be exceptionally suited for the treatment of chronic inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000320319DOI Listing

Publication Analysis

Top Keywords

macrolide antibiotics
12
biological mechanisms
8
immune system
8
immunomodulatory effects
4
effects macrolide
4
antibiotics biological
4
mechanisms macrolide
4
antibiotics well
4
well antibacterial
4
antibacterial anti-inflammatory
4

Similar Publications

Two new strains of Streptomyces with metabolic potential for biological control of pear black spot disease.

BMC Microbiol

December 2024

State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China.

Background: Pear black spot is caused by Alternaria tenuissima. It is one of the diseases of concern limiting pear production worldwide. Existing cultivation methods and fungicides are not sufficient to control early blight.

View Article and Find Full Text PDF

With increasing antibiotic resistance in gram-negative bacteria, including those causing Shigellosis, evidence of safety and pharmacokinetics data on new oral antibiotics is crucial. We aimed to investigate the safety and pharmacokinetic properties of an oral carbapenem, tebipenem pivoxil, along with it's ability to produce desired results in childhood shigellosis. This randomized pilot clinical trial was conducted at Dhaka Hospital, icddr,b in 2022 between May and September.

View Article and Find Full Text PDF

Rapamycin is an important natural macrolide antibiotic with antifungal, immunosuppressive and antitumor activities produced by Streptomyces rapamycinicus. However, their prospective applications are limited by low fermentation units. In this study, we found that the exogenous aromatic amino acids phenylalanine and tyrosine could effectively increase the yield of rapamycin in industrial microbial fermentation.

View Article and Find Full Text PDF

We present a comprehensive spectroscopic study supported by theoretical quantum chemical calculations conducted on a molecular system (4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and the antibiotic Amphotericin B (AmB)) that exhibits highly synergistic properties. We previously reported the strong synergism of this molecular system and now wish to present related stationary measurements of UV-Vis absorption, fluorescence, and fluorescence anisotropy in a polar, aprotic solvent (DMSO and a PBS buffer), followed by time-resolved fluorescence intensity and anisotropy decay studies using different ratios of the selected 1,3,4-thiadiazole derivative to Amphotericin B. Absorption spectra measured for the system revealed discrepancies in terms of the shapes of absorption bands, particularly in PBS.

View Article and Find Full Text PDF

Study of the effect of azithromycin on airway remodeling in asthma via the SAPK/JNK pathway.

J Cardiothorac Surg

December 2024

Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, China, 310009.

Objective: Asthma is a prevalent status attributing to lower respiratory tract chronic inflammation. Azithromycin (AZM) is known to be effective against asthma. Thus, this study delved into the mechanism of AZM repressing airway remodeling (AR) via the SAPK/JNK pathway in asthma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!