Certain plants are known to accumulate heavy metals, and can be used in remediation of polluted soil or water. Plant-associated bacteria, especially those that are metal tolerant, may enhance the total amount of metal accumulated by the plant, but this process is still unclear. In this study, we investigated metal enhancement vs. exclusion by plants, and the phytoprotective role plant-associated bacteria might provide to plants exposed to heavy metal. We isolated cadmium-tolerant bacteria from the roots of the aquatic plant Lemna minor grown in heavy metal-polluted waters, and tested these isolates for tolerance to cadmium. The efficiency of plants to accumulate heavy metal from their surrounding environment was then tested by comparing L. minor plants grown with added metal tolerant bacteria to plants grown axenically to determine, whether bacteria associated with these plants increase metal accumulation in the plant. Unexpectedly, cadmium tolerance was not seen in all bacterial isolates that had been exposed to cadmium. Axenic plants accumulated slightly more cadmium than plants inoculated with bacterial isolates. Certain isolates promoted root growth, but overall, addition of bacterial strains did not enhance plant cadmium uptake, and in some cases, inhibited cadmium accumulation by plants. This suggests that bacteria serve a phytoprotective role in their relationship with Lemna minor, preventing toxic cadmium from entering plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2010.07.073DOI Listing

Publication Analysis

Top Keywords

lemna minor
12
plants
11
cadmium
8
cadmium accumulation
8
aquatic plant
8
plant lemna
8
minor plants
8
plants accumulate
8
accumulate heavy
8
plant-associated bacteria
8

Similar Publications

D1-104/3 and C31-106/3 differentially modulate the antioxidative response of duckweed ( L.) to salt stress.

Front Microbiol

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Article Synopsis
  • Duckweed is a valuable model for studying plant responses to stress, specifically focusing on how bacterial strains D1-104/3 and C31-106/3 influence growth and stress responses under salt stress (10 and 100 mM NaCl).
  • The experiment measured various physiological parameters after 14 days, revealing that both bacterial strains colonized duckweeds and affected growth differently, with C31-106/3 showing a longer doubling time but reducing chlorosis.
  • Results indicated that both bacterial strains enhanced antioxidant capacity and reduced oxidative stress, with significant differences in their impacts on proline, chlorophyll, and enzyme activities, particularly at higher salt concentrations.
View Article and Find Full Text PDF

Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities.

View Article and Find Full Text PDF

Overexpression Enhances Cadmium Tolerance in .

Environ Sci Technol

December 2024

Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China.

Glutathione S-transferase (GST) has been established to play an important role in regulating the responses of plants to stress, although its function and mechanisms of action in the cadmium (Cd)-tolerant remain unclear. In this study, we sought to identify a Cd-responsive gene from for functional analysis and mechanistic characterization. We accordingly identified a member of the gene family, , which plays a positive role in adaptation of to Cd.

View Article and Find Full Text PDF

Transgenerational Plasticity Enhances the Tolerance of Duckweed () to Stress from Exudates of .

Int J Mol Sci

December 2024

Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.

Transgenerational plasticity (TGP) refers to the influence of ancestral environmental signals on offspring's traits across generations. While evidence of TGP in plants is growing, its role in plant adaptation over successive generations remains unclear, particularly in floating plants facing fluctuating environments. Duckweed (), a common ecological remediation material, often coexists with the harmful bloom-forming cyanobacterium , which releases a highly toxic exudate mixture (MaE) during its growth.

View Article and Find Full Text PDF

The potential of two different aquatic macrophytes, Azolla pinnata R.Br. and Lemna minor L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!