A polymorphic 68-bp tandem repeat has been identified within the promoter of the human prodynorphin (PDYN) gene. We found that this 68-bp repeat in the PDYN promoter occurs naturally up to five times. We studied the effect of the number of 68-bp repeats, and of a SNP (rs61761346) found within the repeat on PDYN gene promoter activity. Thirteen promoter forms, different naturally occurring combinations of repeats and the internal SNP, were cloned upstream of the luciferase reporter gene, transfected into human SK-N-SH, H69, or HEK293 cells. Cells were then stimulated with TPA or caffeine. We found cell-specific effects of the number of 68-bp repeats on the transcriptional activity of the PDYN promoter. In SK-N-SH and H69 cells, three or four repeats led to lower expression of luciferase than did one or two repeats. The opposite effect was found in HEK293 cells. The SNP also had an effect on PDYN gene expression in both SK-N-SH and H69 cells; promoter forms with the A allele had significantly higher expression than promoter forms with the G allele. These results further our understanding of the complex transcriptional regulation of the PDYN gene promoter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995810 | PMC |
http://dx.doi.org/10.1111/j.1369-1600.2010.00248.x | DOI Listing |
Prog Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada. Electronic address:
There are substantial differences in the characteristics of males and females with an autism spectrum disorder (ASD), yet there is little knowledge surrounding the mechanistic underpinnings of these differences. The valproic acid (VPA) rodent model is based upon the human fetal valproate spectrum disorder, which is associated with increased risk of developing ASD. This model, which displays significant social, learning, and memory alterations, has therefore been widely used to further our understanding of specific biological features of ASD.
View Article and Find Full Text PDFJ Comp Neurol
December 2024
Department of Neurology, University of Iowa, Iowa City, Iowa, USA.
The nucleus of the solitary tract (NTS) receives visceral information and regulates appetitive, digestive, and cardiorespiratory systems. Within the NTS, diverse processes operate in parallel to sustain life, but our understanding of their cellular composition is incomplete. Here, we integrate histologic and transcriptomic analysis to identify and compare molecular features that distinguish neurons in this brain region.
View Article and Find Full Text PDFHeliyon
June 2024
Translational Medicine, Global Translation, Novo Nordisk A/S, 2760 Måløv, Denmark.
Objective: Co-treatment with long acting PYY and the GLP-1 receptor agonists has potential as an efficient obesity treatment. This study investigates whether the mechanisms behind additive reduction of food intake and weight loss depends on complementary effects in brain areas regulating food intake and if restoration of leptin sensitivity is involved.
Methods: Diet-induced obese (DIO) mice were co-treated with PYY(3-36) and exendin-4 (Ex4, GLP-1R agonist) for 14 days using minipumps.
Int J Mol Sci
August 2024
Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
Epigenetic mechanisms, including histone post-translational modifications (PTMs), play a critical role in regulating pain perception and the pathophysiology of burn injury. However, the epigenetic regulation and molecular mechanisms underlying burn injury-induced pain remain insufficiently explored. Spinal dynorphinergic (Pdyn) neurons contribute to heat hyperalgesia induced by severe scalding-type burn injury through p-S10H3-dependent signaling.
View Article and Find Full Text PDFInt J Reprod Biomed
May 2024
Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!