Perovskite phase instability of BiMnO3 has been exploited to synthesize epitaxial metal oxide magnetic nanocrystals. Thin film processing conditions are tuned to promote the breakdown of the perovskite precursor into Bi2O3 matrix and magnetic manganese oxide islands. Subsequent cooling in vacuum ensures complete volatization of the Bi2O3, thus leaving behind an array of self-assembled magnetic Mn3O4 nanostructures. Both shape and size can be systematically controlled by the ambient oxygen environments and deposition time. As such, this approach can be extended to any other Bi-based complex ternary oxide system as it primarily hinges on the breakdown of parent Bi-based precursor and subsequent Bi2O3 volatization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn1010123 | DOI Listing |
Heliyon
December 2024
Department of Mechanics, Electrical Power and Computer, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Dissimilar laser welding of martensitic AISI 1060 carbon steel and Duplex Stainless Steel 2205 was performed based on an experimental and numerical study. The experiments were then conducted based on central composite design experiments (CCD) and analyzed via the response surface methodology (RSM) by considering the effect of laser welding process parameters (incident laser power, speed of welding, nozzle distance and deviation of laser beam) on the weld joint characterization. The experimental results showed that the laser power had a remarkable effect on the melt pool depth.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark.
Electrostriction is the upsurge of strain under an electric field in any dielectric material. Oxygen-defective metal oxides, such as acceptor-doped ceria, exhibit high electrostriction 10 mV values, which can be further enhanced via interface engineering at the nanoscale. This effect in ceria is "non-classical" as it arises from an intricate relation between defect-induced polarisation and local elastic distortion in the lattice.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
The controllable synthesis of epitaxial nanopillar arrays is fundamentally important to the development of advanced electrical and optical devices. However, this fascinating growth method has rarely been applied to the bottom-up synthesis of plasmonic nanostructure arrays (PNAs) with many broad, important, and promising applications in optical sensing, nonlinear optics, surface-enhanced spectroscopies, photothermal conversion, photochemistry, etc. Here, a one-step epitaxial approach to single-crystalline NbTiN (NbTiN) nanopillar arrays based on the layer plus island growth mode is demonstrated by strain engineering.
View Article and Find Full Text PDFNature
January 2025
imec, Leuven, Belgium.
Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.
View Article and Find Full Text PDFSmall Methods
December 2024
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China.
Controllably modulating the structure of transition-metal chalcogenides (TMCs) from 2D to 1D and tuning their electronic properties has drawn particular attention currently due to their remarkable properties and potential applications. In this work, by precisely controlling the chemical concentration of Te atoms, the transformation from the 2D honeycomb AgTe monolayer to high-quality and well-defined 1D AgTe nanowires on the Ag(111) substrate has been successfully achieved. The combination of scanning tunneling microscopy measurements and first-principles calculations has confirmed that the mechanism underlying the entire dimensional transformation lies in the directional movement of Ag atoms in the 2D AgTe monolayer regulated by the concentration of Te atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!